

 Navigation

 	
 index

 	
 modules |

 	

About

The dolfin-adjoint project automatically derives the discrete
adjoint and tangent linear models from a forward model written in
the Python interface to DOLFIN [http://fenicsproject.org].

These adjoint and tangent linear models are key ingredients in many
important algorithms, such as data assimilation, optimal control,
sensitivity analysis, design optimisation, and error estimation. Such
models have made an enormous impact in fields such as meteorology and
oceanography, but their use in other scientific fields has been
hampered by the great practical difficulty of their derivation and
implementation. In his recent book [http://dx.doi.org/10.1137/1.9781611972078], Naumann (2011) states that

[T]he automatic generation of optimal (in terms of robustness and
efficiency) adjoint versions of large-scale simulation code is one
of the great open challenges in the field of High-Performance
Scientific Computing.

The dolfin-adjoint project aims to solve this problem for the case
where the model is implemented in the Python interface to DOLFIN.

News

11.6.2015: P. E. Farrell, S. W. Funke, D. A. Ham and M. E. Rognes were awarded the 2015 Wilkinson prize for numerical software [http://www.nag.co.uk/other/WilkinsonPrize.html] for dolfin-adjoint.

Features

dolfin-adjoint has the following features:

	Works for both steady and time-dependent problems and for both linear and nonlinear problems.

	Using it is very easy: given a differentiable forward model, employing dolfin-adjoint involves
changing on the order of ten lines of code.

	The adjoint and tangent linear models exhibit optimal theoretical efficiency. If every forward
variable is stored, the adjoint takes 0.2-1.0x the runtime of the forward model, depending on the
precise details of the structure of the forward problem.

	If the forward model runs in parallel, the adjoint and tangent linear models also run in parallel
with no modification.

	If instructed, the adjoint model can automatically employ optimal checkpointing schemes to
mitigate storage requirements for long nonlinear runs.

	Rigorous verification routines are provided, so that users can easily verify for themselves
the correctness of the derived models.

	Solves optimisation problems constrained by partial differential equations by interfacing to powerful optimisation algorithms

For more details, see the features page.

Limitations

To do all this, dolfin-adjoint requires some cooperation from the
model developer:

	Works only with the Python interface of DOLFIN.

	For the adjoint to be consistent, the discretisation must be differentiable.

	All changes to object values (matrices, vectors, functions) must happen through the DOLFIN interface.

How it works

The traditional approach to deriving adjoint and tangent linear models
is called algorithmic differentiation [http://www.autodiff.org] (also called automatic
differentiation). The fundamental idea of algorithmic differentiation
is to treat the model as a sequence of elementary instructions. An
elementary instruction is a simple operation such as addition,
multiplication, or exponentiation. Each one of these operations is
differentiated individually, and the derivative of the whole model is
then composed with the chain rule.

The dolfin-adjoint project is instead based on a very different
approach. The model is considered as a sequence of equation
solves. This abstraction is similar to the fundamental abstraction of
algorithmic differentiation, but operates at a much higher level of
abstraction. This idea is implemented in a software library,
libadjoint [http://bitbucket.org/dolfin-adjoint/libadjoint]. When this new idea is combined with the high-level
abstraction of the FEniCS system, many of the difficult problems
associated with algorithmic differentiation dissolve.

For more technical details on libadjoint and dolfin-adjoint, see
the papers.

Contributors

The dolfin-adjoint project is developed and maintained by the
following authors:

	Patrick E. Farrell [http://pefarrell.org] (Mathematical Institute, University of Oxford)

	Simon W. Funke [http://simonfunke.com] (Center for Biomedical Computing, Simula Research Laboratory / Applied Modelling and Computation Group, Imperial College London)

	David A. Ham [http://www.ic.ac.uk/people/david.ham] (Department of Mathematics and Department of Computing, Imperial College London)

	Marie E. Rognes [http://home.simula.no/~meg/] (Center for Biomedical Computing, Simula Research Laboratory)

	James R. Maddison [http://www.maths.ed.ac.uk/people/show?person-364] (School of Mathematics, University of Edinburgh)

License

Like the core FEniCS components [http://fenicsproject.org/about/], The dolfin-adjoint software is
freely available under the GNU LGPL [http://www.gnu.org/licenses/lgpl.html], version 3.

 Copyright 2015, The dolfin-adjoint team.

 Navigation

 	
 index

 	
 modules |

 	

 Python Module Index

 d

 			

 		
 d	

 	
 	
 dolfin_adjoint	

 Copyright 2015, The dolfin-adjoint team.

 Navigation

 	
 index

 	
 modules |

 	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | I
 | J
 | K
 | L
 | N
 | P
 | R
 | S
 | T

_

 	

 	__call__() (dolfin_adjoint.ReducedFunctional method)

 	

 	(dolfin_adjoint.ReducedFunctionalNumPy method)

 	

 	__init__() (dolfin_adjoint.DolfinAdjointVariable method)

A

 	

 	adj_check_checkpoints() (in module dolfin_adjoint)

 	adj_checkpointing() (in module dolfin_adjoint)

 	adj_html() (in module dolfin_adjoint)

 	adj_inc_timestep() (in module dolfin_adjoint)

 	adj_reset() (in module dolfin_adjoint)

 	

 	adj_start_timestep() (in module dolfin_adjoint)

 	assemble() (in module dolfin_adjoint)

 	assemble_system() (in module dolfin_adjoint)

 	assign() (dolfin_adjoint.Function method)

C

 	

 	compute_adjoint() (in module dolfin_adjoint)

 	compute_gradient() (in module dolfin_adjoint)

 	compute_gst() (in module dolfin_adjoint)

 	compute_tlm() (in module dolfin_adjoint)

 	

 	Constant (class in dolfin_adjoint)

 	ConstantControl (class in dolfin_adjoint)

 	Control() (in module dolfin_adjoint)

D

 	

 	dolfin_adjoint (module)

 	

 	DolfinAdjointVariable (class in dolfin_adjoint)

E

 	

 	EqualityConstraint (class in dolfin_adjoint)

F

 	

 	Function (class in dolfin_adjoint)

 	function() (dolfin_adjoint.EqualityConstraint method)

 	

 	(dolfin_adjoint.InequalityConstraint method)

 	

 	Functional (class in dolfin_adjoint)

 	FunctionControl (class in dolfin_adjoint)

I

 	

 	InequalityConstraint (class in dolfin_adjoint)

 	interpolate() (in module dolfin_adjoint)

 	

 	iteration_count() (dolfin_adjoint.DolfinAdjointVariable method)

J

 	

 	jacobian() (dolfin_adjoint.EqualityConstraint method)

 	

 	(dolfin_adjoint.InequalityConstraint method)

K

 	

 	known_timesteps() (dolfin_adjoint.DolfinAdjointVariable method)

 	

 	KrylovSolver (class in dolfin_adjoint)

L

 	

 	LinearVariationalProblem (class in dolfin_adjoint)

 	LinearVariationalSolver (class in dolfin_adjoint)

 	

 	LUSolver (class in dolfin_adjoint)

N

 	

 	NewtonSolver (class in dolfin_adjoint)

 	NonlinearVariationalProblem (class in dolfin_adjoint)

 	

 	NonlinearVariationalSolver (class in dolfin_adjoint)

P

 	

 	project() (in module dolfin_adjoint)

 	

 	pyopt_problem() (dolfin_adjoint.ReducedFunctionalNumPy method)

R

 	

 	ReducedFunctional (class in dolfin_adjoint)

 	ReducedFunctionalNumPy (class in dolfin_adjoint)

 	

 	replay_dolfin() (in module dolfin_adjoint)

S

 	

 	solve() (dolfin_adjoint.KrylovSolver method)

 	

 	(dolfin_adjoint.LUSolver method)

 	(dolfin_adjoint.LinearVariationalSolver method)

 	(dolfin_adjoint.NewtonSolver method)

 	(dolfin_adjoint.NonlinearVariationalSolver method)

 	(in module dolfin_adjoint)

T

 	

 	tape_value() (dolfin_adjoint.DolfinAdjointVariable method)

 	

 	taylor_test() (in module dolfin_adjoint)

 Copyright 2015, The dolfin-adjoint team.

 _images/math/afd9124b349a00604e03f11c10d39bfa2045f677.png

_images/math/570ad2bdb57d9c3f3c5edf9f669ce3e3d3b47019.png

_images/math/ebbc902c6eec3e4c855687aaae0595051fcbb28e.png

_images/math/e8ebd209e4c39712156edc58c1662051192551e6.png

_images/math/8ad60523f106126caa8494439e30f0d8683151cb.png
dJ /dm

_images/math/ac8c8ffc009f99ecd32f01651eeaea117647d7b1.png
—vAu+Vp =0 in{
divu—=0 inQ

_images/math/a5873ccd2ab41f5dd9e2c7d359b52f7f91408076.png
X, gL

at+V Y -V(=— (aT
o ox
ey v

o ¥ VT:7 2
xt” V2T,
TR vsffv2

—Cy

105
R ow

)+V’§,

_images/math/08b6194ba9806b835000c8312aa5ff0629dab217.png
U — uUp

_images/math/1e3c5786f90a37b5bd61fccb836025d7140263ca.png

_images/math/572cbbe0bbb828a77cd5cd37fdd21685a04292ea.png

_images/math/83b2f8a363b5e9b352c5b1c6d12e0f151fe7a28d.png
Fluy)

_images/math/b35a9439ad8c8657b1b1d792ad5c2d77a52c0aef.png

_images/math/32f599916ead6990af5cf5a389a353435fe61257.png
yalr,y) = flz,y) = —|ry — 0.5 + 0.25

_images/math/3dd3fd5d72fe966e322e645ba8372ec0548f3d0a.png
1 1
T(u) = T(un) = 5 (N =M, pu) + 5 u = un, p) + R

_images/math/1712ba102c6e976b572ec1ac9b63bdb90f7c953b.png

_images/math/0467e0003559a763cbcd16dcd0bf3c33f9c65901.png

_images/math/ad59b6e24a4a00ac621801f8d7513d68be654ab5.png

_images/math/bbdfb4a2248609c4fcd9bc27bf4ebe2cf103e100.png

_images/math/e25e127caa301cfe9264f65e84bfa5052d745414.png

_images/math/6d4a149d9d4e9489e2fb301ec77b00bcf8da296b.png

_images/math/a434458804eaa3d6db0179fd62f209607abe0879.png

_images/math/6f985ba30682c7c26406f5709bca9f2b21f5cb66.png

_images/math/67ebd61a5a450eda352eb58518d0837afddb0ca5.png

_images/math/e4ab314276e95526c31c9a0b6b07511edf62726c.png
J7(m + hom) — T(m)| =0 at O(h).

_images/math/be9c08fe6f800d8a903ce7f0707ab00f8d6d11f1.png
d d

T (nm) = -0

85 (u,m) du | BF(w,m)
By dm | Bm

8(u,my dn BFlwm)

ou dm ~ om
Hwo o vt

_images/math/b052df1d791578870520bfada15866e1558dcf4a.png
1/5

_images/math/449e37fc06f6e2756a01d6ee0b25c7f6fbaad623.png

_images/math/e525ac9f6e8103c7f5e2dd395e26dd786ef087e1.png
I 4 c\ (x 9J[dug
0 B D || x| =|07/0u).
00 B \n 9J/dus,

_images/math/10b37c629b673215d5fbcfbd2ab92d849045a8bf.png
104

_images/math/34b03160cc327bc758c84f3cafdabf906dc97f2d.png

_images/math/24b1f88f832162194746bcc3f8a6c18f1546d1d6.png
a(u,piv.q) = v (V(u), Vv))g —v{V{wn, v,
= (pdive)g + (pn,) o, — (0, divr)g
Llu,p:v.q) =0

_images/math/e96bfc277e34da66eea36d88203cdd4410c0fac8.png
RY
"

_images/math/36bddd261cefaa804bc20d8a94e9bee8843f040a.png

_images/math/abedbe77c36f6e90b39e688c55c2e917abd1290a.png

_images/math/2c94f5ae1fc91c3b3f2371344d94608576bca757.png
th

_images/math/3eca8557203e86160952e1c0f735f7417f3285b1.png

_images/math/40296733a93a688f069ecb1ebab2209015c81a31.png
dJ /dm

_images/math/d67fb61cfffca2cc069e083d76cb6220b4ca14c8.png

_images/math/35d0f32f25bed7f8b237231e16a23be7b98b70c9.png

_images/math/b62dbd648bec41b708d49ad414bcc503c3acd4eb.png
gla) =V — |

a

_images/math/724a7a228a29f35c4dc968d9f052369de3dfb205.png

_images/math/be7d19e313cabeabc019eff09c092ccf03665601.png
J(u,m)

_images/math/7d982be6eac53d0b8a0d8107f13141c3c8d76846.png

_images/math/64865b8ae34d759a959d95d8038fcf5689d0b3ed.png
du/dm

_images/math/5b01f95d11e632541d6f1ba3d0340ff2725586a3.png
yn+l

_images/math/d375ad249fb53c6042cdf21e47b447e65dc8a292.png
(

Sonr

SN

o Ao

)

o
M
Az

)-(

0. 0uo
8J/0uy
370,

)

_images/math/916304fea86bb57743af20a631336eee0af68a62.png

_images/math/ae798387eec98ed77cf78c605941f86314893b32.png
U — uUp

_images/math/752626fbc49f8cca23763748fe4738589dd6ddf0.png
= M(ug + dug) —

_images/math/126e84ba38f7dece5f0ad64e929b9588b20f6440.png

_images/math/8756ca84b7b646f417eafd49dd4eb5810fbc4d30.png
Ugld € V

_images/math/0a8e2c063b50cec99eed14eb755d5c1aac32e569.png

_images/math/a25406e1e4753e75f13da43313d27ce7c5f440eb.png
(T

eu

_images/math/0f251b7a470730aab8e5f5e5442bb8825a846f48.png

_images/math/0acafa529182e79b4f56165ec677554fba7fcf98.png

_images/math/1ab0134b6e0837594649c75a2ed83cfd85a2d03d.png

_images/math/b3c7c06654838209abe75671d0a729b8ad9cbf13.png
4 _ 87 du | 0J
dm ~ du dm am

_images/math/5cb9e83040ed446a2b8f6bcde808ade811c01b70.png

_images/math/734cba42de1aedb64eb471589c4f88a83840a66c.png

_images/math/18cbd415b1a8e3f19977c5d04d046d41c585c7de.png

_images/math/c4bb40dd65eae6c11b325989b14e0b8d35e4e3ef.png

_images/math/0aa767c8eaa445002a94e77e600caeea66b9bb2d.png
J(u) — J(uy)

_images/math/5b9d47ae7d6e1d4091952d5df36af3ef5792be9a.png
v EV

_images/math/cfd13a0f26eb7ef0093319a7669da7dd3771dbac.png

_images/math/2a018887eadc0036606a45253d81202e1eb1bea3.png

_images/math/48d83e9c810e652bbf69425b6579992c5bd84bcc.png

_images/math/9beb1d3e18e1b425bc8194c77e26211226767cab.png
AF*QF~9J" 0J"

gm Ju_Qu | om
Sior U Ux1 Six1

_images/math/40887d83818fcb2fd08e2c7ef05d89f7779cf282.png
subject to
Lh<m<ly
glm) <0

_images/math/89d47de8d11835a4c46157fed1aaa331793df3e8.png
max(0,y) =

_images/math/102d9e7c8d6d57dc0168b58ff2d613b7966a7cab.png
dJ [/ ou

_images/math/30a02e0a235fd1b20809e2b592e125a7772d4e99.png

_images/math/becbf080c2c9ac89bdaac80630545c09f6c23fbc.png
dJ/dm

_images/math/3662070cc77fc3960eba594201bc63ad805d9575.png

_images/math/42ea6497370303fb1939e89d48c0ac78bc936e57.png

_images/math/a69f4f4e402f5dad11a61da71fa55ce6262220a6.png

_images/math/4e94f473b4b7758173445a175966fb464e2d7881.png

_images/math/bf08066d9f883492eeeb28009b8b29704f0d594a.png
(OF (u,m)/0u)”

_images/math/b124ff74afb0914bb434e8fb849eb56d734412f8.png

_images/math/e7fa4d2fb4ad10e5084305bb41ecd5d8eb47e36e.png

_images/math/516e8e69cb2e0cf19a092ecfaf763417e6f5fa3f.png

_images/math/3c50568fb2e613eeb5c0104d8c4da603e1872424.png
sin(mx) sin(my)

1
amniytic = 5 sin(re) sin(my)

_images/math/c61207015da1399227e02f95af88045a3b556858.png
|ug|| = /(Sug, dug) = 1

_images/math/4aa941f0da3a8eeea77b947ea1deaf786e3225b7.png
//T+n/nVa Va

_images/math/c482b706389456c04426a22c534325c46417d84b.png

_images/math/2e94650f879a215e00f360c560fbb758bd578334.png
f:Q - K

_images/math/2ed6c979921cefafbd04c9142e1de3c03f83521a.png

_images/math/67f4714f065d485540ad40829e0717bf75e9dd85.png

_images/math/c2afb78bccd9731aca14124b6b19fa7a48b3e21c.png
du/dm

_images/math/079867e4af9c765e2b70b28ccc7d07389a292992.png

_images/math/141d492cf707d559920cee67cba39bd77df7e5ed.png

_images/math/d721a33abd108241e05e9bd12e04ec46d8a3447b.png

_images/math/7b1816c51f7d31275cd3ad400208fb7b3ce136a0.png

_images/math/f16e161fea21d0dffc47bf088342e71f7c646b67.png
1
in =y — g2+ 2
min =y — yal|3 + 2l

_images/math/2587ca10f695c9bacd43fbec192902f8682d3e91.png

_images/math/b7eb947eed7b1d58b3e52f9a627f57cc60ed331a.png

_images/velocity.png
1,00

0,780

0.500

0,250

0.00

_images/pressure.png
0.20

4,65

3,10

1,95

0.00

_images/klein-bottle.png

_images/salinity-combined.png
A A A ’
R

et
- - v W

_images/poisson-topology-3d.png

_images/stokes_bc_control_domain.png
0Qin

walls

anircle

aQW&HS

aQout

_images/mpec.png

_images/optimal_control.png
0,090

0.443

0,295

0,147

0.00

_images/mesh.png

_images/math/d0644f7e18d26b174c12ba64659636acd21d161f.png
(Yh: 8) + AL VY, Vo) — At(ph, V - 9) = At(u",) + (4,)
—AHV -yl g) =0

_images/math/4f2c7fe18c786e37ff081b9e9ca9c835013e6d06.png
a,b,c.d

_images/math/6bd6b69e7846992625db6cd37ca4dcec179fdbc3.png
uq

_images/math/d12c7224d4cc44af7bcd64b8e1229acfe2ea847c.png
p:Ql— K

_static/forward.html

General information

Number of timesteps: 11

Number of registered equations: 24

Forward system

		f_19:0:0:Forward(disk_checkpoint_equation)
		f_17:0:0:Forward
		f_19:0:1:Forward
		f_17:0:1:Forward
		f_19:1:0:Forward
		f_17:1:0:Forward
		f_19:2:0:Forward
		f_17:2:0:Forward
		f_19:3:0:Forward (disk(checkpoint))
		f_17:3:0:Forward (disk(checkpoint))
		f_19:4:0:Forward(disk_checkpoint_equation)
		f_17:4:0:Forward
		f_19:5:0:Forward
		f_17:5:0:Forward
		f_19:6:0:Forward (mem(checkpoint))
		f_17:6:0:Forward (mem(checkpoint))
		f_19:7:0:Forward(memory_checkpoint_equation)
		f_17:7:0:Forward
		f_19:8:0:Forward
		f_17:8:0:Forward
		f_19:9:0:Forward (mem(checkpoint))
		f_17:9:0:Forward (mem(checkpoint))
		f_19:10:0:Forward(memory_checkpoint_equation)
		f_17:10:0:Forward

		Ident

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		

		
		Ident

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		

		
		
		756a4

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		Rhs

		
		
		
		Ident

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		Rhs

		
		
		
		
		a6d9a

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		Rhs

		
		
		
		
		
		Ident

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		Rhs

		
		
		
		
		
		
		2c242

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		Rhs

		
		
		
		
		
		
		
		Ident

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		Rhs

		
		
		
		
		
		
		
		
		52409

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		Rhs

		
		
		
		
		
		
		
		
		
		Ident

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		Rhs

		
		
		
		
		
		
		
		
		
		
		00347

		
		
		
		
		
		
		
		
		
		
		
		
		
		Rhs

		
		
		
		
		
		
		
		
		
		
		
		Ident

		
		
		
		
		
		
		
		
		
		
		
		
		Rhs

		
		
		
		
		
		
		
		
		
		
		
		
		9cbb0

		
		
		
		
		
		
		
		
		
		
		
		Rhs

		
		
		
		
		
		
		
		
		
		
		
		
		
		Ident

		
		
		
		
		
		
		
		
		
		
		Rhs

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		4200e

		
		
		
		
		
		
		
		
		
		Rhs

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		Ident

		
		
		
		
		
		
		
		
		Rhs

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		846ab

		
		
		
		
		
		
		
		Rhs

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		Ident

		
		
		
		
		
		
		Rhs

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		59f24

		
		
		
		
		
		Rhs

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		Ident

		
		
		
		
		Rhs

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		12025

		
		
		
		Rhs

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		Ident

		
		
		Rhs

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		cce62

		
		Rhs

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		Ident

		Rhs

Auxiliary variables

Callback information

Data callbacks

vec_duplicate
vec_axpy
vec_destroy
vec_set_values
vec_get_size
vec_divide
vec_get_norm
vec_dot_product
vec_set_random
mat_duplicate
mat_duplicate
mat_axpy
mat_destroy
Block action callbacks

Identity: <Function space of dimension 7442 (<Lagrange vector element of degree 2 on a <Domain built from <triangle cell in 2D> with label dolfin_mesh_with_id_0>: 2 x <CG2 on a <Domain built from <triangle cell in 2D> with label dolfin_mesh_with_id_0>>>)>

756a44dd7e919e00b8eb29af7a828b6c

a6d9a704c2cc84d2d4dc96bbae2c3e11

2c242e19c07f689ee880b75c156b57e6

52409fa7be86f2bc5324510f8a50ee6f

003475a122d5a5d3f2c169a6f89ceb7d

9cbb0fa314749c64a6a2c6ba7a3e906b

4200e87f4c15c48b1ff4f827a7a77e9b

846aba4489af38c1c82f678b7742f98b

59f243bfbbed940f07565b30f3f1cd34

12025de5f2bad245891312117ee3cb35

cce62a22f466a3367ffa381ac034db80

Block assembly callbacks

Identity: <Function space of dimension 7442 (<Lagrange vector element of degree 2 on a <Domain built from <triangle cell in 2D> with label dolfin_mesh_with_id_0>: 2 x <CG2 on a <Domain built from <triangle cell in 2D> with label dolfin_mesh_with_id_0>>>)>

756a44dd7e919e00b8eb29af7a828b6c

a6d9a704c2cc84d2d4dc96bbae2c3e11

2c242e19c07f689ee880b75c156b57e6

52409fa7be86f2bc5324510f8a50ee6f

003475a122d5a5d3f2c169a6f89ceb7d

9cbb0fa314749c64a6a2c6ba7a3e906b

4200e87f4c15c48b1ff4f827a7a77e9b

846aba4489af38c1c82f678b7742f98b

59f243bfbbed940f07565b30f3f1cd34

12025de5f2bad245891312117ee3cb35

cce62a22f466a3367ffa381ac034db80

Nonlinear block action callbacks

Nonlinear block derivative action callbacks

Nonlinear block second derivative action callbacks

Nonlinear derivative block assembly callbacks

Functional callbacks

Functional derivative callbacks

_images/math/061450e8e318ff2d944d810447cab7a075dafe19.png

_images/math/f077d5ae549ec68a9d12cd9e37eb51c898ddf8b8.png

_static/comment.png

_images/math/97441f47666b68c2474067d558acbcbf958b6bea.png

_images/math/349f2bac436502b33287839db556c76e25e6b851.png

_static/minus.png

_images/math/d3c88b6a9c045230242c971af8bd9e7e0fda64f5.png
T(m + hém) — J(m) — VT -6m| =0 at O(h?).

_images/math/8ad5fe41626edf5bbdd741986367ec0b9791d248.png
alu, p:v,q) = L{u,p:v., q)

_images/math/07ce0d91ed2766be04e47a78f66b73f8bcd1047a.png

_images/math/ac057e4efe27146b986440a08695e8a7f3c63a1c.png
up — gy =0 InQ
P x(0,7),
u(0,8) = s(t),
u(L.t) =0,

_static/more.png

_images/math/ffc4afc9b1d8d4def9a294b1d52c27e0fd3deea3.png

_images/math/00eaf80fd925b5f0dba0b04d5905e0fff5d99893.png
w &k kK
L]
SN

on Jfleirlce
on %y,
on Qs
on 9t

_build/localmedia/_static/highlight/README.ru.html

 Navigation

 		
 index

 		
 modules |

 		 »

Highlight.js

Highlight.js нужен для подсветки синтаксиса в примерах кода в блогах,
форумах и вообще на любых веб-страницах. Пользоваться им очень просто,
потому что работает он автоматически: сам находит блоки кода, сам
определяет язык, сам подсвечивает.

Автоопределением языка можно управлять, когда оно не справляется само (см.
дальше “Эвристика”).

Простое использование

Подключите библиотеку и стиль на страницу и повесть вызов подсветки на
загрузку страницы:

<link rel="stylesheet" href="styles/default.css">
<script src="highlight.pack.js"></script>
<script>hljs.initHighlightingOnLoad();</script>

Весь код на странице, обрамлённый в теги <pre><code> .. </code></pre>
будет автоматически подсвечен. Если вы используете другие теги или хотите
подсвечивать блоки кода динамически, читайте “Инициализацию вручную” ниже.

		Вы можете скачать собственную версию “highlight.pack.js” или сослаться
на захостенный файл, как описано на странице загрузки:
http://highlightjs.org/download/

		Стилевые темы можно найти в загруженном архиве или также использовать
захостенные. Чтобы сделать собственный стиль для своего сайта, вам
будет полезен CSS classes reference [http://highlightjs.readthedocs.org/en/latest/css-classes-reference.html], который тоже есть в архиве.

node.js

Highlight.js можно использовать в node.js. Библиотеку со всеми возможными языками можно
установить с NPM:

npm install highlight.js

Также её можно собрать из исходников с только теми языками, которые нужны:

python3 tools/build.py -tnode lang1 lang2 ..

Использование библиотеки:

var hljs = require('highlight.js');

// Если вы знаете язык
hljs.highlight(lang, code).value;

// Автоопределение языка
hljs.highlightAuto(code).value;

AMD

Highlight.js можно использовать с загрузчиком AMD-модулей. Для этого его
нужно собрать из исходников следующей командой:

$ python3 tools/build.py -tamd lang1 lang2 ..

Она создаст файл build/highlight.pack.js, который является загружаемым
AMD-модулем и содержит все выбранные при сборке языки. Используется он так:

require(["highlight.js/build/highlight.pack"], function(hljs){

 // Если вы знаете язык
 hljs.highlight(lang, code).value;

 // Автоопределение языка
 hljs.highlightAuto(code).value;
});

Замена TABов

Также вы можете заменить символы TAB (‘\x09’), используемые для отступов, на
фиксированное количество пробелов или на отдельный , чтобы задать ему
какой-нибудь специальный стиль:

<script type="text/javascript">
 hljs.configure({tabReplace: ' '}); // 4 spaces
 // ... or
 hljs.configure({tabReplace: '\t'});

 hljs.initHighlightingOnLoad();
</script>

Инициализация вручную

Если вы используете другие теги для блоков кода, вы можете инициализировать их
явно с помощью функции highlightBlock(code). Она принимает DOM-элемент с
текстом расцвечиваемого кода и опционально - строчку для замены символов TAB.

Например с использованием jQuery код инициализации может выглядеть так:

$(document).ready(function() {
 $('pre code').each(function(i, e) {hljs.highlightBlock(e)});
});

highlightBlock можно также использовать, чтобы подсветить блоки кода,
добавленные на страницу динамически. Только убедитесь, что вы не делаете этого
повторно для уже раскрашенных блоков.

Если ваш блок кода использует
 вместо переводов строки (т.е. если это не
<pre>), включите опцию useBR:

hljs.configure({useBR: true});
$('div.code').each(function(i, e) {hljs.highlightBlock(e)});

Эвристика

Определение языка, на котором написан фрагмент, делается с помощью
довольно простой эвристики: программа пытается расцветить фрагмент всеми
языками подряд, и для каждого языка считает количество подошедших
синтаксически конструкций и ключевых слов. Для какого языка нашлось больше,
тот и выбирается.

Это означает, что в коротких фрагментах высока вероятность ошибки, что
периодически и случается. Чтобы указать язык фрагмента явно, надо написать
его название в виде класса к элементу <code>:

<pre><code class="html">...</code></pre>

Можно использовать рекомендованные в HTML5 названия классов:
“language-html”, “language-php”. Также можно назначать классы на элемент
<pre>.

Чтобы запретить расцветку фрагмента вообще, используется класс “no-highlight”:

<pre><code class="no-highlight">...</code></pre>

Экспорт

В файле export.html находится небольшая программка, которая показывает и дает
скопировать непосредственно HTML-код подсветки для любого заданного фрагмента кода.
Это может понадобится например на сайте, на котором нельзя подключить сам скрипт
highlight.js.

Координаты

		Версия: 8.0

		URL: http://highlightjs.org/

Лицензионное соглашение читайте в файле LICENSE.
Список авторов и соавторов читайте в файле AUTHORS.ru.txt

 © Copyright 2015, The dolfin-adjoint team.

_images/math/4e2d4542da0d1bb140ea1a6480ad1414a515c0b6.png
T(m + hom) — T(m) — hV T - 6m

_images/math/5112bf0fe2fbe2761349e37f4b96d676018ddc79.png

_build/localmedia/_static/highlight/README.html

 Navigation

 		
 index

 		
 modules |

 		 »

Highlight.js

Highlight.js highlights syntax in code examples on blogs, forums and,
in fact, on any web page. It’s very easy to use because it works
automatically: finds blocks of code, detects a language, highlights it.

Autodetection can be fine tuned when it fails by itself (see “Heuristics”).

Basic usage

Link the library and a stylesheet from your page and hook highlighting to
the page load event:

<link rel="stylesheet" href="styles/default.css">
<script src="highlight.pack.js"></script>
<script>hljs.initHighlightingOnLoad();</script>

This will highlight all code on the page marked up as <pre><code> .. </code></pre>.
If you use different markup or need to apply highlighting dynamically, read
“Custom initialization” below.

		You can download your own customized version of “highlight.pack.js” or
use the hosted one as described on the download page:
http://highlightjs.org/download/

		Style themes are available in the download package or as hosted files.
To create a custom style for your site see the class reference in the file
CSS classes reference [http://highlightjs.readthedocs.org/en/latest/css-classes-reference.html] from the downloaded package.

node.js

Highlight.js can be used under node.js. The package with all supported languages is
installable from NPM:

npm install highlight.js

Alternatively, you can build it from the source with only languages you need:

python3 tools/build.py -tnode lang1 lang2 ..

Using the library:

var hljs = require('highlight.js');

// If you know the language
hljs.highlight(lang, code).value;

// Automatic language detection
hljs.highlightAuto(code).value;

AMD

Highlight.js can be used with an AMD loader. You will need to build it from
source in order to do so:

$ python3 tools/build.py -tamd lang1 lang2 ..

Which will generate a build/highlight.pack.js which will load as an AMD
module with support for the built languages and can be used like so:

require(["highlight.js/build/highlight.pack"], function(hljs){

 // If you know the language
 hljs.highlight(lang, code).value;

 // Automatic language detection
 hljs.highlightAuto(code).value;
});

Tab replacement

You can replace TAB (‘\x09’) characters used for indentation in your code
with some fixed number of spaces or with a to give them special
styling:

<script type="text/javascript">
 hljs.configure({tabReplace: ' '}); // 4 spaces
 // ... or
 hljs.configure({tabReplace: '\t'});

 hljs.initHighlightingOnLoad();
</script>

Custom initialization

If you use different markup for code blocks you can initialize them manually
with highlightBlock(code) function. It takes a DOM element containing the
code to highlight and optionally a string with which to replace TAB
characters.

Initialization using, for example, jQuery might look like this:

$(document).ready(function() {
 $('pre code').each(function(i, e) {hljs.highlightBlock(e)});
});

You can use highlightBlock to highlight blocks dynamically inserted into
the page. Just make sure you don’t do it twice for already highlighted
blocks.

If your code container relies on
 tags instead of line breaks (i.e. if
it’s not <pre>) set the useBR option to true:

hljs.configure({useBR: true});
$('div.code').each(function(i, e) {hljs.highlightBlock(e)});

Heuristics

Autodetection of a code’s language is done using a simple heuristic:
the program tries to highlight a fragment with all available languages and
counts all syntactic structures that it finds along the way. The language
with greatest count wins.

This means that in short fragments the probability of an error is high
(and it really happens sometimes). In this cases you can set the fragment’s
language explicitly by assigning a class to the <code> element:

<pre><code class="html">...</code></pre>

You can use class names recommended in HTML5: “language-html”,
“language-php”. Classes also can be assigned to the <pre> element.

To disable highlighting of a fragment altogether use “no-highlight” class:

<pre><code class="no-highlight">...</code></pre>

Export

File export.html contains a little program that allows you to paste in a code
snippet and then copy and paste the resulting HTML code generated by the
highlighter. This is useful in situations when you can’t use the script itself
on a site.

Meta

		Version: 8.0

		URL: http://highlightjs.org/

For the license terms see LICENSE files.
For authors and contributors see AUTHORS.en.txt file.

 © Copyright 2015, The dolfin-adjoint team.

_images/math/6b6b0b277d6472264008b04cc20730c43fc48090.png

_images/math/883c74d19052e72de2d33d8534e788444c56f1ac.png
min J(y, u) over (y. u)

_images/math/9ef25b613c33fc610b6e3899e451fc30b3e40df5.png
0, 1] x [0, 2]

_images/math/6edfe12fc24792c3112ff009eff8473e8ad4e2dd.png

_build/localmedia/_static/highlight/CHANGES.html

 Navigation

 		
 index

 		
 modules |

 		 »

Version 8.0 beta

This new major release is quite a big overhaul bringing both new features and
some backwards incompatible changes. However, chances are that the majority of
users won’t be affected by the latter: the basic scenario described in the
README is left intact.

Here’s what did change in an incompatible way:

		We’re now prefixing all classes located in CSS classes reference [http://highlightjs.readthedocs.org/en/latest/css-classes-reference.html] with
hljs-, by default, because some class names would collide with other
people’s stylesheets. If you were using an older version, you might still want
the previous behavior, but still want to upgrade. To suppress this new
behavior, you would initialize like so:

<script type="text/javascript">
 hljs.configure({classPrefix: ''});
 hljs.initHighlightingOnLoad();
</script>

		tabReplace and useBR that were used in different places are also unified
into the global options object and are to be set using configure(options).
This function is documented in our API docs [http://highlightjs.readthedocs.org/en/latest/api.html]. Also note that these
parameters are gone from highlightBlock and fixMarkup which are now also
rely on configure.

		We removed public-facing (though undocumented) object hljs.LANGUAGES which
was used to register languages with the library in favor of two new methods:
registerLanguage and getLanguage. Both are documented in our API docs [http://highlightjs.readthedocs.org/en/latest/api.html].

		Result returned from highlight and highlightAuto no longer contains two
separate attributes contributing to relevance score, relevance and
keyword_count. They are now unified in relevance.

Another technically compatible change that nonetheless might need attention:

		The structure of the NPM package was refactored, so if you had installed it
locally, you’ll have to update your paths. The usual require('highlight.js')
works as before. This is contributed by Dmitry Smolin [https://github.com/dimsmol].

New features:

		Languages now can be recognized by multiple names like “js” for JavaScript or
“html” for, well, HTML (which earlier insisted on calling it “xml”). These
aliases can be specified in the class attribute of the code container in your
HTML as well as in various API calls. For now there are only a few very common
aliases but we’ll expand it in the future. All of them are listed in the
[class reference][].

		Language detection can now be restricted to a subset of languages relevant in
a given context — a web page or even a single highlighting call. This is
especially useful for node.js build that includes all the known languages.
Another example is a StackOverflow-style site where users specify languages
as tags rather than in the markdown-formatted code snippets. This is
documented in the [API reference][] (see methods highlightAuto and
configure).

		Language definition syntax streamlined with variants [https://groups.google.com/d/topic/highlightjs/VoGC9-1p5vk/discussion] and
beginKeywords [https://github.com/isagalaev/highlight.js/commit/6c7fdea002eb3949577a85b3f7930137c7c3038d].

New languages and styles:

		Oxygene by Carlo Kok [https://github.com/carlokok]

		Mathematica by Daniel Kvasnička [https://github.com/dkvasnicka]

		Autohotkey by Seongwon Lee [https://github.com/dlimpid]

		Atelier family of styles in 10 variants by Bram de Haan [https://github.com/atelierbram]

		Paraíso styles by Jan T. Sott [https://github.com/idleberg]

Miscelleanous improvements:

		Highlighting => prompts in Clojure.

		Jeremy Hull [https://github.com/sourrust] fixed a lot of styles for consistency.

		Finally, highlighting PHP and HTML mixed in peculiar ways [https://twitter.com/highlightjs/status/408890903017689088].

		Objective C and C# now properly highlight titles in method definition.

		Big overhaul of relevance counting for a number of languages. Please do report
bugs about mis-detection of non-trivial code snippets!

Version 7.5

A catch-up release dealing with some of the accumulated contributions. This one
is probably will be the last before the 8.0 which will be slightly backwards
incompatible regarding some advanced use-cases.

One outstanding change in this version is the addition of 6 languages to the
hosted script [http://highlightjs.org/download/]: Markdown, ObjectiveC, CoffeeScript, Apache, Nginx and
Makefile. It now weighs about 6K more but we’re going to keep it under 30K.

New languages:

		OCaml by Mehdi Dogguy [https://github.com/mehdid] and Nicolas Braud-Santoni [https://github.com/nbraud]

		LiveCode Server [http://livecode.com/developers/guides/server/] by Ralf Bitter [https://github.com/revig]

		Scilab by Sylvestre Ledru [https://github.com/sylvestre]

		basic support for Makefile by Ivan Sagalaev [https://github.com/isagalaev]

Improvements:

		Ruby’s got support for characters like ?A, ?1, ?\012 etc. and %r{..}
regexps.

		Clojure now allows a function call in the beginning of s-expressions
(($filter "myCount") (arr 1 2 3 4 5)).

		Haskell’s got new keywords and now recognizes more things like pragmas,
preprocessors, modules, containers, FFIs etc. Thanks to Zena Treep [https://github.com/treep]
for the implementation and to Jeremy Hull [https://github.com/sourrust] for guiding it.

		Miscelleanous fixes in PHP, Brainfuck, SCSS, Asciidoc, CMake, Python and F#.

New core developers

The latest long period of almost complete inactivity in the project coincided
with growing interest to it led to a decision that now seems completely obvious:
we need more core developers.

So without further ado let me welcome to the core team two long-time
contributors: Jeremy Hull [https://github.com/sourrust] and Oleg
Efimov [https://github.com/sannis].

Hope now we’ll be able to work through stuff faster!

P.S. The historical commit is here [https://github.com/isagalaev/highlight.js/commit/f3056941bda56d2b72276b97bc0dd5f230f2473f] for the record.

Version 7.4

This long overdue version is a snapshot of the current source tree with all the
changes that happened during the past year. Sorry for taking so long!

Along with the changes in code highlight.js has finally got its new home at
http://highlightjs.org/, moving from its craddle on Software Maniacs which it
outgrew a long time ago. Be sure to report any bugs about the site to
mailto:info@highlightjs.org.

On to what’s new…

New languages:

		Handlebars templates by Robin Ward [https://github.com/eviltrout]

		Oracle Rules Language by Jason Jacobson [https://github.com/jayce7]

		F# by Joans Follesø [https://github.com/follesoe]

		AsciiDoc and Haml by Dan Allen [https://github.com/mojavelinux]

		Lasso by Eric Knibbe [https://github.com/EricFromCanada]

		SCSS by Kurt Emch [https://github.com/kemch]

		VB.NET by Poren Chiang [https://github.com/rschiang]

		Mizar by Kelley van Evert [https://github.com/kelleyvanevert]

New style themes:

		Monokai Sublime by noformnocontent [http://nn.mit-license.org/]

		Railscasts by Damien White [https://github.com/visoft]

		Obsidian by Alexander Marenin [https://github.com/ioncreature]

		Docco by Simon Madine [https://github.com/thingsinjars]

		Mono Blue by Ivan Sagalaev [https://github.com/isagalaev] (uses a single color hue for everything)

		Foundation by Dan Allen [https://github.com/mojavelinux]

Other notable changes:

		Corrected many corner cases in CSS.

		Dropped Python 2 version of the build tool.

		Implemented building for the AMD format.

		Updated Rust keywords (thanks to Dmitry Medvinsky [https://github.com/dmedvinsky]).

		Literal regexes can now be used in language definitions.

		CoffeeScript highlighting is now significantly more robust and rich due to
input from Cédric Néhémie [https://github.com/abe33].

Version 7.3

		Since this version highlight.js no longer works in IE version 8 and older.
It’s made it possible to reduce the library size and dramatically improve code
readability and made it easier to maintain. Time to go forward!

		New languages: AppleScript (by Nathan Grigg [https://github.com/nathan11g] and Dr. Drang [https://github.com/drdrang]) and
Brainfuck (by Evgeny Stepanischev [https://github.com/bolknote]).

		Improvements to existing languages:
		interpreter prompt in Python (>>> and ...)

		@-properties and classes in CoffeeScript

		E4X in JavaScript (by Oleg Efimov [https://github.com/Sannis])

		new keywords in Perl (by Kirk Kimmel [https://github.com/kimmel])

		big Ruby syntax update (by Vasily Polovnyov [https://github.com/vast])

		small fixes in Bash

		Also Oleg Efimov did a great job of moving all the docs for language and style
developers and contributors from the old wiki under the source code in the
“docs” directory. Now these docs are nicely presented at
http://highlightjs.readthedocs.org/.

Version 7.2

A regular bug-fix release without any significant new features. Enjoy!

Version 7.1

A Summer crop:

		Marc Fornos [https://github.com/mfornos] made the definition for Clojure along with the matching
style Rainbow (which, of course, works for other languages too).

		CoffeeScript support continues to improve getting support for regular
expressions.

		Yoshihide Jimbo ported to highlight.js five Tomorrow styles [http://jmblog.github.com/color-themes-for-highlightjs/] from the
project by Chris Kempson [https://github.com/ChrisKempson/Tomorrow-Theme].

		Thanks to Casey Duncun [https://github.com/caseman] the library can now be built in the popular
AMD format [http://requirejs.org/docs/whyamd.html].

		And last but not least, we’ve got a fair number of correctness and consistency
fixes, including a pretty significant refactoring of Ruby.

Version 7.0

The reason for the new major version update is a global change of keyword syntax
which resulted in the library getting smaller once again. For example, the
hosted build is 2K less than at the previous version while supporting two new
languages.

Notable changes:

		The library now works not only in a browser but also with node.js [http://nodejs.org/]. It is
installable with npm install highlight.js. API [http://softwaremaniacs.org/wiki/doku.php/highlight.js:api] docs are available on our
wiki.

		The new unique feature (apparently) among syntax highlighters is highlighting
HTTP headers and an arbitrary language in the request body. The most useful
languages here are XML and JSON both of which highlight.js does support.
Here’s the detailed post [http://softwaremaniacs.org/blog/2012/05/10/http-and-json-in-highlight-js/en/] about the feature.

		Two new style themes: a dark “south” Pojoaque [http://web-cms-designs.com/ftopict-10-pojoaque-style-for-highlight-js-code-highlighter.html] by Jason Tate and an
emulation ofXCode IDE by Angel Olloqui [https://github.com/angelolloqui].

		Three new languages: D by Aleksandar Ružičić [https://github.com/raleksandar], R by Joe Cheng [https://github.com/jcheng5]
and GLSL by Sergey Tikhomirov [https://github.com/tikhomirov].

		Nginx syntax has become a million times smaller and more universal thanks to
remaking it in a more generic manner that doesn’t require listing all the
directives in the known universe.

		Function titles are now highlighted in PHP.

		Haskell and VHDL were significantly reworked to be more rich and correct
by their respective maintainers Jeremy Hull [https://github.com/sourrust] and Igor Kalnitsky [https://github.com/ikalnitsky].

And last but not least, many bugs have been fixed around correctness and
language detection.

Overall highlight.js currently supports 51 languages and 20 style themes.

Version 6.2

A lot of things happened in highlight.js since the last version! We’ve got nine
new contributors, the discussion group came alive, and the main branch on GitHub
now counts more than 350 followers. Here are most significant results coming
from all this activity:

		5 (five!) new languages: Rust, ActionScript, CoffeeScript, MatLab and
experimental support for markdown. Thanks go to Andrey Vlasovskikh [https://github.com/vlasovskikh],
Alexander Myadzel [https://github.com/myadzel], Dmytrii Nagirniak [https://github.com/dnagir], Oleg Efimov [https://github.com/Sannis], Denis
Bardadym [https://github.com/btd] and John Crepezzi [https://github.com/jcheng5].

		2 new style themes: Monokai by Luigi Maselli [http://grigio.org/] and stylistic imitation of
another well-known highlighter Google Code Prettify by Aahan Krish [https://github.com/geekpanth3r].

		A vast number of correctness fixes and code refactorings [https://github.com/isagalaev/highlight.js/commits/], mostly made
by Oleg Efimov [https://github.com/Sannis] and Evgeny Stepanischev [https://github.com/bolknote].

Version 6.1 — Solarized

Jeremy Hull [https://github.com/sourrust] has implemented my dream feature — a port of Solarized [http://ethanschoonover.com/solarized]
style theme famous for being based on the intricate color theory to achieve
correct contrast and color perception. It is now available for highlight.js in
both variants — light and dark.

This version also adds a new original style Arta. Its author pumbur maintains a
heavily modified fork of highlight.js [https://github.com/pumbur/highlight.js] on GitHub.

Version 6.0

New major version of the highlighter has been built on a significantly
refactored syntax. Due to this it’s even smaller than the previous one while
supporting more languages!

New languages are:

		Haskell by Jeremy Hull [https://github.com/sourrust]

		Erlang in two varieties — module and REPL — made collectively by Nikolay
Zakharov [http://desh.su/], Dmitry Kovega [https://github.com/arhibot] and Sergey Ignatov [https://github.com/ignatov]

		Objective C by Valerii Hiora [https://github.com/vhbit]

		Vala by Antono Vasiljev [https://github.com/antono]

		Go by Stephan Kountso [https://github.com/steplg]

Also this version is marginally faster and fixes a number of small long-standing
bugs.

Developer overview of the new language syntax is available in a blog post about
recent beta release [http://softwaremaniacs.org/blog/2011/04/25/highlight-js-60-beta/en/].

P.S. New version is not yet available on a Yandex’ CDN, so for now you have to
download your own copy [http://highlightjs.org/download/].

Version 5.14

Fixed bugs in HTML/XML detection and relevance introduced in previous
refactoring.

Also test.html now shows the second best result of language detection by
relevance.

Version 5.13

Past weekend began with a couple of simple additions for existing languages but
ended up in a big code refactoring bringing along nice improvements for language
developers.

For users

		Description of C++ has got new keywords from the upcoming C++ 0x [http://ru.wikipedia.org/wiki/C%2B%2B0x] standard.

		Description of HTML has got new tags from HTML 5 [http://en.wikipedia.org/wiki/HTML5].

		CSS-styles have been unified to use consistent padding and also have lost
pop-outs with names of detected languages.

		Igor Kalnitsky [https://github.com/ikalnitsky] has sent two new language descriptions: CMake и VHDL.

This makes total number of languages supported by highlight.js to reach 35.

Bug fixes:

		Custom classes on <pre> tags are not being overridden anymore

		More correct highlighting of code blocks inside non-<pre> containers:
highlighter now doesn’t insist on replacing them with its own container and
just replaces the contents.

		Small fixes in browser compatibility and heuristics.

For developers

The most significant change is the ability to include language submodes right
under contains instead of defining explicit named submodes in the main array:

contains: [
 'string',
 'number',
 {begin: '\\n', end: hljs.IMMEDIATE_RE}
]

This is useful for auxiliary modes needed only in one place to define parsing.
Note that such modes often don’t have className and hence won’t generate a
separate in the resulting markup. This is similar in effect to
noMarkup: true. All existing languages have been refactored accordingly.

Test file test.html has at last become a real test. Now it not only puts the
detected language name under the code snippet but also tests if it matches the
expected one. Test summary is displayed right above all language snippets.

CDN

Fine people at Yandex [http://yandex.com/] agreed to host highlight.js on their big fast servers.
Link up [http://softwaremaniacs.org/soft/highlight/en/download/]!

Version 5.10 — “Paris”.

Though I’m on a vacation in Paris, I decided to release a new version with a
couple of small fixes:

		Tomas Vitvar discovered that TAB replacement doesn’t always work when used
with custom markup in code

		SQL parsing is even more rigid now and doesn’t step over SmallTalk in tests

Version 5.9

A long-awaited version is finally released.

New languages:

		Andrew Fedorov made a definition for Lua

		a long-time highlight.js contributor Peter Leonov [http://kung-fu-tzu.ru/] made a definition for
Nginx config

		Vladimir Moskva [http://fulc.ru/] made a definition for TeX

Fixes for existing languages:

		Loren Segal [http://gnuu.org/] reworked the Ruby definition and added highlighting for
YARD [http://yardoc.org/] inline documentation

		the definition of SQL has become more solid and now it shouldn’t be overly
greedy when it comes to language detection

The highlighter has become more usable as a library allowing to do highlighting
from initialization code of JS frameworks and in ajax methods (see.
readme.eng.txt).

Also this version drops support for the WordPress [http://wordpress.org/] plugin. Everyone is
welcome to pick up its maintenance [http://softwaremaniacs.org/blog/2012/05/10/http-and-json-in-highlight-js/en/] if needed.

Version 5.8

		Jan Berkel has contributed a definition for Scala. +1 to hotness!

		All CSS-styles are rewritten to work only inside <pre> tags to avoid
conflicts with host site styles.

Version 5.7.

Fixed escaping of quotes in VBScript strings.

Version 5.5

This version brings a small change: now .ini-files allow digits, underscores and
square brackets in key names.

Version 5.4

Fixed small but upsetting bug in the packer which caused incorrect highlighting
of explicitly specified languages. Thanks to Andrew Fedorov for precise
diagnostics!

Version 5.3

The version to fulfil old promises.

The most significant change is that highlight.js now preserves custom user
markup in code along with its own highlighting markup. This means that now it’s
possible to use, say, links in code. Thanks to Vladimir Dolzhenko [http://dolzhenko.blogspot.com/] for the
initial proposal [https://github.com/isagalaev/highlight.js/commit/f3056941bda56d2b72276b97bc0dd5f230f2473f] and for making a proof-of-concept patch.

Also in this version:

		Vasily Polovnyov [http://vasily.polovnyov.ru/] has sent a GitHub-like style and has implemented
support for CSS @-rules and Ruby symbols.

		Yura Zaripov has sent two styles: Brown Paper and School Book.

		Oleg Volchkov has sent a definition for Parser 3 [http://www.parser.ru/].

Version 5.2

		at last it’s possible to replace indentation TABs with something sensible (e.g. 2 or 4 spaces)

		new keywords and built-ins for 1C by Sergey Baranov

		a couple of small fixes to Apache highlighting

Version 5.1

This is one of those nice version consisting entirely of new and shiny
contributions!

		Vladimir Ermakov [http://vehq.ru/about/] created highlighting for AVR Assembler

		Ruslan Keba [http://rukeba.com/] created highlighting for Apache config file. Also his
original visual style for it is now available for all highlight.js languages
under the name “Magula”.

		Shuen-Huei Guan [http://drakeguan.org/] (aka Drake) sent new keywords for RenderMan
languages. Also thanks go to Konstantin Evdokimenko [http://k-evdokimenko.moikrug.ru/] for his advice on
the matter.

Version 5.0

The main change in the new major version of highlight.js is a mechanism for
packing several languages along with the library itself into a single compressed
file. Now sites using several languages will load considerably faster because
the library won’t dynamically include additional files while loading.

Also this version fixes a long-standing bug with Javascript highlighting that
couldn’t distinguish between regular expressions and division operations.

And as usually there were a couple of minor correctness fixes.

Great thanks to all contributors! Keep using highlight.js.

Version 4.3

This version comes with two contributions from Jason Diamond [http://jason.diamond.name/weblog/]:

		language definition for C# (yes! it was a long-missed thing!)

		Visual Studio-like highlighting style

Plus there are a couple of minor bug fixes for parsing HTML and XML attributes.

Version 4.2

The biggest news is highlighting for Lisp, courtesy of Vasily Polovnyov. It’s
somewhat experimental meaning that for highlighting “keywords” it doesn’t use
any pre-defined set of a Lisp dialect. Instead it tries to highlight first word
in parentheses wherever it makes sense. I’d like to ask people programming in
Lisp to confirm if it’s a good idea and send feedback to the forum [http://softwaremaniacs.org/forum/highlightjs/].

Other changes:

		Smalltalk was excluded from DEFAULT_LANGUAGES to save traffic

		Vladimir Epifanov [http://voldmar.ya.ru/] has implemented javascript style switcher for
test.html

		comments now allowed inside Ruby function definition

		MEL [http://en.wikipedia.org/wiki/Maya_Embedded_Language] language from Shuen-Huei Guan [http://drakeguan.org/]

		whitespace now allowed between <pre> and <code>

		better auto-detection of C++ and PHP

		HTML allows embedded VBScript (<% .. %>)

Version 4.1

Languages:

		Bash from Vah

		DOS bat-files from Alexander Makarov (Sam)

		Diff files from Vasily Polovnyov

		Ini files from myself though initial idea was from Sam

Styles:

		Zenburn from Vladimir Epifanov, this is an imitation of a
well-known theme for Vim [http://en.wikipedia.org/wiki/Zenburn].

		Ascetic from myself, as a realization of ideals of non-flashy highlighting:
just one color in only three gradations :-)

In other news. One small bug [http://softwaremaniacs.org/forum/viewtopic.php?id=1823] was fixed, built-in keywords were added for
Python and C++ which improved auto-detection for the latter (it was shame that
my wife’s blog [http://alenacpp.blogspot.com/] had issues with it from time to time). And lastly
thanks go to Sam for getting rid of my stylistic comments in code that were
getting in the way of JSMin [http://code.google.com/p/jsmin-php/].

Version 4.0

New major version is a result of vast refactoring and of many contributions.

Visible new features:

		Highlighting of embedded languages. Currently is implemented highlighting of
Javascript and CSS inside HTML.

		Bundled 5 ready-made style themes!

Invisible new features:

		Highlight.js no longer pollutes global namespace. Only one object and one
function for backward compatibility.

		Performance is further increased by about 15%.

Changing of a major version number caused by a new format of language definition
files. If you use some third-party language files they should be updated.

Version 3.5

A very nice version in my opinion fixing a number of small bugs and slightly
increased speed in a couple of corner cases. Thanks to everybody who reports
bugs in he forum [http://softwaremaniacs.org/forum/highlightjs/] and by email!

There is also a new language — XML. A custom XML formerly was detected as HTML
and didn’t highlight custom tags. In this version I tried to make custom XML to
be detected and highlighted by its own rules. Which by the way include such
things as CDATA sections and processing instructions (<? ... ?>).

Version 3.3

Vladimir Gubarkov [http://xonixx.blogspot.com/] has provided an interesting and useful addition.
File export.html contains a little program that shows and allows to copy and
paste an HTML code generated by the highlighter for any code snippet. This can
be useful in situations when one can’t use the script itself on a site.

Version 3.2 consists completely of contributions:

		Vladimir Gubarkov has described SmallTalk

		Yuri Ivanov has described 1C

		Peter Leonov has packaged the highlighter as a Firefox extension

		Vladimir Ermakov has compiled a mod for phpBB

Many thanks to you all!

Version 3.1

Three new languages are available: Django templates, SQL and Axapta. The latter
two are sent by Dmitri Roudakov [https://github.com/isagalaev/highlight.js/commit/f3056941bda56d2b72276b97bc0dd5f230f2473f]. However I’ve almost entirely rewrote an
SQL definition but I’d never started it be it from the ground up :-)

The engine itself has got a long awaited feature of grouping keywords
(“keyword”, “built-in function”, “literal”). No more hacks!

Version 3.0

It is major mainly because now highlight.js has grown large and has become
modular. Now when you pass it a list of languages to highlight it will
dynamically load into a browser only those languages.

Also:

		Konstantin Evdokimenko of RibKit [http://ribkit.sourceforge.net/] project has created a highlighting for
RenderMan Shading Language and RenderMan Interface Bytestream. Yay for more
languages!

		Heuristics for C++ and HTML got better.

		I’ve implemented (at last) a correct handling of backslash escapes in C-like
languages.

There is also a small backwards incompatible change in the new version. The
function initHighlighting that was used to initialize highlighting instead of
initHighlightingOnLoad a long time ago no longer works. If you by chance still
use it — replace it with the new one.

Version 2.9

Highlight.js is a parser, not just a couple of regular expressions. That said
I’m glad to announce that in the new version 2.9 has support for:

		in-string substitutions for Ruby – #{...}

		strings from from numeric symbol codes (like #XX) for Delphi

Version 2.8

A maintenance release with more tuned heuristics. Fully backwards compatible.

Version 2.7

		Nikita Ledyaev presents highlighting for VBScript, yay!

		A couple of bugs with escaping in strings were fixed thanks to Mickle

		Ongoing tuning of heuristics

Fixed bugs were rather unpleasant so I encourage everyone to upgrade!

Version 2.4

		Peter Leonov provides another improved highlighting for Perl

		Javascript gets a new kind of keywords — “literals”. These are the words
“true”, “false” and “null”

Also highlight.js homepage now lists sites that use the library. Feel free to
add your site by dropping me a message until I find the time to build a
submit form.

Version 2.3

This version fixes IE breakage in previous version. My apologies to all who have
already downloaded that one!

Version 2.2

		added highlighting for Javascript

		at last fixed parsing of Delphi’s escaped apostrophes in strings

		in Ruby fixed highlighting of keywords ‘def’ and ‘class’, same for ‘sub’ in
Perl

Version 2.0

		Ruby support by Anton Kovalyov [https://github.com/geekpanth3r]

		speed increased by orders of magnitude due to new way of parsing

		this same way allows now correct highlighting of keywords in some tricky
places (like keyword “End” at the end of Delphi classes)

Version 1.0

Version 1.0 of javascript syntax highlighter is released!

It’s the first version available with English description. Feel free to post
your comments and question to highlight.js forum [http://softwaremaniacs.org/forum/viewforum.php?id=6]. And don’t be afraid
if you find there some fancy Cyrillic letters – it’s for Russian users too :-)

 © Copyright 2015, The dolfin-adjoint team.

_images/math/dd295814c0d3d1c81413582caa275904ec1fc87f.png

_images/math/51732139f6f7010f0ed113057d2976a2aa66b6af.png

_images/math/e2d55f38e77d95dd676ed2a3f51ccb1eed476724.png
I circle

documentation/examples.html

 Navigation

 		
 index

 		
 modules |

 		 »

Examples of using dolfin-adjoint

Sensitivity analysis

		Sensitivity analysis of the heat equation on a Gray’s Klein bottle
		Background

		Problem definition

		Implementation
		Checkpointing timings

Optimization examples

		Optimal control of the Poisson equation
		Problem definition

		Implementation

		Convergence order and mesh independence
		Moola Newton-CG

		Moola L-BFGS

		Dirichlet BC control of the Stokes equations
		Problem definition

		Implementation

		Results

		Topology optimisation of heat conduction problems governed by the Poisson equation
		Problem definition

		Implementation

		Topology optimisation of fluids in Stokes flow
		Problem definition

		Implementation

		Time-dependent optimal control of the linear scalar wave equation
		Problem definition

		Discretization

		Implementation

		Comments

		Mathematical Programs with Equilibrium Constraints
		Problem definition

		Penalisation technique

		Implementation

Generalized stability examples

		Generalised stability analysis of double-diffusive salt fingering
		Background

		Problem definition

		Implementation

 © Copyright 2015, The dolfin-adjoint team.

documentation/functionals.html

 Navigation

 		
 index

 		
 modules |

 		 »

Expressing functionals

In the example presented in the tutorial, the quantity of interest was
evaluated at the end of the simulation. However, it is very common
to want to compute integrals over time, or evaluated at certain points
in time that are not the end. The syntax of the Functional
class is intended to be very general, and to express all of these needs
naturally.

The core abstraction for functionals in dolfin-adjoint is that a functional is either

		an integral of a form over a certain time window, or

		a pointwise evaluation in time of a certain form, or

		a sum of terms like (a) and (b).

Examples

To see how it works, consider some examples:

		Integration over all time:

J = Functional(inner(u, u)*dx*dt)

		Integration over a certain time window:

J = Functional(inner(u, u)*dx*dt[0:1])

		Integration from a certain point until the end:

J = Functional(inner(u, u)*dx*dt[0.5:])

		Pointwise evaluation in time (does not need to line up with timesteps):

J = Functional(inner(u, u)*dx*dt[0.5])

		Pointwise evaluation at the start (e.g. for regularisation terms):

J = Functional(inner(u, u)*dx*dt[START_TIME])

		Pointwise evaluation at the end:

J = Functional(inner(u, u)*dx*dt[FINISH_TIME])

		And sums of these work too:

J = Functional(inner(u, u)*dx*dt + inner(u, u)*dx*dt[FINISH_TIME])

The object to express these evaluations in time is the TimeMeasure
object. By default, dolfin-adjoint creates a TimeMeasure called dt. If your code
redefines dt, you will need to instantiate a new TimeMeasure class under a different
name:

Can't use dt, because it's been set to be the timestep
dtm = TimeMeasure()
J = Functional(inner(u, u)*dx*dtm + inner(u, u)*dx*dtm[FINISH_TIME])

Limitations

If you use a complicated functional, you should be aware of some points.

		In order for anything other than evaluation at the end of time to work,
you need to call adj_start_timestep before
your time loop, and adj_inc_timestep
function as the last instruction in your time loop. This is to make dolfin-adjoint aware that a timestep has ended,
and the start and end times of that timestep.

		Evaluation of expressions at times other than timesteps is currently performed using
linear interpolation, which may not be the correct thing to do if you are
using a higher-order scheme in time.

 © Copyright 2015, The dolfin-adjoint team.

documentation/verification.html

 Navigation

 		
 index

 		
 modules |

 		 »

Verification

Taylor remainder convergence test

The fundamental tool used in verification of gradients is the
Taylor remainder convergence test. Let [image: \widehat{J}(m)] be the functional, considered
as a pure function of the parameter of interest,
let [image: \nabla \widehat{J}] be its gradient, and let [image: \delta m] be a perturbation to
[image: m]. This test is based on the observation that

[image: \left|\widehat{J}(m + h\delta m) - \widehat{J}(m)\right| \rightarrow 0 \quad \mathrm{at} \ O(h),]

but that

[image: \left|\widehat{J}(m + h\delta m) - \widehat{J}(m) - h\nabla \widehat{J} \cdot \delta m\right| \rightarrow 0 \quad \mathrm{at} \ O(h^2),]

by Taylor’s theorem. The quantity [image: \left|\widehat{J}(m + h\delta m) - \widehat{J}(m)\right|] is called the first-order
Taylor remainder (because it’s supposed to be first-order), and the quantity [image: \left|\widehat{J}(m + h\delta m) - \widehat{J}(m) - h\nabla \widehat{J} \cdot \delta m\right|]
is called the second-order Taylor remainder.

Suppose someone gives you two functions [image: \widehat{J}] and [image: d\widehat{J}], and claims that [image: d\widehat{J}] is the gradient of
[image: \widehat{J}]. Then their claim can be rigorously verified by computing the second-order Taylor remainder for some
choice of [image: h] and [image: \delta m], then repeatedly halving [image: h] and checking that the result decreases
by a factor of 4.

Applying this in dolfin-adjoint

In the case of PDE-constrained optimisation, computing [image: \widehat{J}(m)] involves solving the PDE
for that choice of [image: m] to compute the solution [image: u], and then evaluating the functional [image: J].
The main function in dolfin-adjoint for applying the Taylor remainder convergence test is taylor_test.
To see how this works, let’s restructure our forward model so that we can run it as a pure function of
the diffusivity [image: \nu]:

from dolfin import *
from dolfin_adjoint import *

n = 30
mesh = UnitSquareMesh(n, n)
V = VectorFunctionSpace(mesh, "CG", 2)

ic = project(Expression(("sin(2*pi*x[0])", "cos(2*pi*x[1])")), V)

def main(nu):
 u = Function(ic)
 u_next = Function(V)
 v = TestFunction(V)

 timestep = Constant(0.01)

 F = (inner((u_next - u)/timestep, v)
 + inner(grad(u_next)*u_next, v)
 + nu*inner(grad(u_next), grad(v)))*dx

 bc = DirichletBC(V, (0.0, 0.0), "on_boundary")

 t = 0.0
 end = 0.1
 while (t <= end):
 solve(F == 0, u_next, bc)
 u.assign(u_next)
 t += float(timestep)

 return u

if __name__ == "__main__":
 nu = Constant(0.0001)
 u = main(nu)

 J = Functional(inner(u, u)*dx*dt[FINISH_TIME])
 dJdnu = compute_gradient(J, Control(nu))

As you can see, we’ve taken the action part of the model into a function main, so that we
can drive the forward model several times for verification. Now let’s see how to use taylor_test:

from dolfin import *
from dolfin_adjoint import *

n = 30
mesh = UnitSquareMesh(n, n)
V = VectorFunctionSpace(mesh, "CG", 2)

ic = project(Expression(("sin(2*pi*x[0])", "cos(2*pi*x[1])")), V)

def main(nu):
 u = Function(ic)
 u_next = Function(V)
 v = TestFunction(V)

 timestep = Constant(0.01)

 F = (inner((u_next - u)/timestep, v)
 + inner(grad(u_next)*u_next, v)
 + nu*inner(grad(u_next), grad(v)))*dx

 bc = DirichletBC(V, (0.0, 0.0), "on_boundary")

 t = 0.0
 end = 0.1
 while (t <= end):
 solve(F == 0, u_next, bc)
 u.assign(u_next)
 t += float(timestep)

 return u

if __name__ == "__main__":
 nu = Constant(0.0001)
 u = main(nu)

 J = Functional(inner(u, u)*dx*dt[FINISH_TIME])
 dJdnu = compute_gradient(J, Control(nu))

 Jnu = assemble(inner(u, u)*dx) # current value

 parameters["adjoint"]["stop_annotating"] = True # stop registering equations

 def Jhat(nu): # the functional as a pure function of nu
 u = main(nu)
 return assemble(inner(u, u)*dx)

 conv_rate = taylor_test(Jhat, Control(nu), Jnu, dJdnu)

[image: more info] Download the adjoint code with verification.

We set parameters["adjoint"]["stop_annotating"] to True, so that the solve calls
in the perturbed runs of main are not registered by libadjoint.

Running this program yields the following output:

$ python tutorial4.py
...
Taylor remainder without adjoint information:
 [0.0023634768826859553, 0.001219686435181555, 0.0006197555788530762,
 0.0003124116082189321, 0.0001568463925042951]

The first line gives the values computed for the first-order Taylor remainder. As you can see, each value is approximately half the previous one.

Convergence orders for Taylor remainder without adjoint information (should all be 1):
 [0.9544004555219242, 0.9767390399645689, 0.9882512926546192, 0.9940957131087177]

The second line shows the convergence orders of the first-order Taylor remainders: these should
always be 1. (If they are not, try passing the seed argument to taylor_test to
use a smaller perturbation.)

Taylor remainder with adjoint information:
 [0.00015639195264909554, 4.0247982485970384e-05, 1.0211629980686528e-05,
 2.5719961979492594e-06, 6.454097041455739e-07]

The third line gives the values computed for the second-order Taylor remainder. These values should be much smaller than those on
the first line.

Convergence orders for Taylor remainder with adjoint information (should all be 2):
 [1.9581779067535698, 1.9787032993204938, 1.9892527525050359, 1.9946013350664813]

The fourth line shows the convergence orders of the second-order Taylor remainders: if the gradient has been computed correctly with the adjoint, then
these numbers should be 2.

As can be seen, the second-order Taylor remainders do indeed converge at second order, and so the gradient dJdnu is correct.

So, what if the Taylor remainders are not correct? Such a situation could occur if the model
manually modifies Function values, or if the model modifies the entries of assembled matrices and
vectors, or if the model is not differentiable, or if there is a bug in dolfin-adjoint. dolfin-adjoint offers many ways to pinpoint
precisely where an error might lie; these are discussed in the section on debugging.

Once the adjoint model development is completed, you may wish to run your model on much bigger
production runs. By default, dolfin-adjoint stores all variables computed in memory, as they
will be necessary to linearise the model about the forward trajectory. If you wish to solve much
bigger problems, or if the model must run for many timesteps, it may not be feasible to store
everything: some balance between storage and recomputation must be achieved, in the form of a
checkpointing scheme. Checkpointing is the topic of the next section.

 © Copyright 2015, The dolfin-adjoint team.

documentation/tutorial.html

 Navigation

 		
 index

 		
 modules |

 		 »

First steps

Foreword

If you have never used the FEniCS system before, you should first read
their tutorial [http://fenicsproject.org/documentation]. If you’re not familiar with adjoints and their
uses, see the background.

A first example

Let’s suppose you are interested in solving the nonlinear
time-dependent Burgers equation:

[image: \frac{\partial \vec u}{\partial t} - \nu \nabla^2 \vec u + \vec u \cdot \nabla \vec u = 0,]

subject to some initial and boundary conditions.

A forward model that solves this problem with P2 finite elements might
look as follows:

from dolfin import *

n = 30
mesh = UnitSquareMesh(n, n)
V = VectorFunctionSpace(mesh, "CG", 2)

ic = project(Expression(("sin(2*pi*x[0])", "cos(2*pi*x[1])")), V)
u = Function(ic)
u_next = Function(V)
v = TestFunction(V)

nu = Constant(0.0001)

timestep = Constant(0.01)

F = (inner((u_next - u)/timestep, v)
 + inner(grad(u_next)*u_next, v)
 + nu*inner(grad(u_next), grad(v)))*dx

bc = DirichletBC(V, (0.0, 0.0), "on_boundary")

t = 0.0
end = 0.1
while (t <= end):
 solve(F == 0, u_next, bc)
 u.assign(u_next)
 t += float(timestep)

[image: more info] You can download the source code and follow along as we
adjoin this code.

The first change necessary to adjoin this code is to import the
dolin-adjoint module after loading dolfin:

from dolfin import *
from dolfin_adjoint import *

The reason why it is necessary to do it afterwards is because
dolfin-adjoint overloads many of the dolfin API functions to
understand what the forward code is doing. In this particular case,
the solve function and
assign method have been
overloaded:

 while (t <= end):
 solve(F == 0, u_next, bc)
 u.assign(u_next)

The dolfin-adjoint versions of these functions will record each step
of the model, building an annotation, so that it can symbolically
manipulate the recorded equations to derive the tangent linear and
adjoint models. Note that no user code had to be changed: it happens
fully automatically.

In order to talk about adjoints, one needs to consider a particular
functional. While dolfin-adjoint supports arbitrary functionals, let
us consider a simple nonlinear example. Suppose our functional of
interest is the square of the norm of the final velocity:

[image: J(u) = \int_{\Omega} \left\langle u(T), u(T) \right\rangle \ \textrm{d}\Omega,]

or in code:

J = Functional(inner(u, u)*dx*dt[FINISH_TIME]).

Here, multiplying by *dt[FINISH_TIME] indicates that the
functional is to be evaluated at the final time.

[image: more info] If the functional were to be an integral over time, one could
multiply by *dt. This requires some more annotation; see
the documentation for adj_inc_timestep. For how to express
more complex functionals, see the documentation on expressing
functionals.

The dolfin-adjoint software has several drivers, depending on
precisely what the user requires. The highest-level interface is to
compute the gradient of the functional with respect to some
Control. For example, suppose we wish to compute the
gradient of [image: J] with respect to the initial condition for
[image: u], using the adjoint. We can do this with the following code:

dJdic = compute_gradient(J, Control(u))

where Control indicates that the
gradient should be computed with respect to the initial condition of that function. This
single function call differentiates the model, assembles each adjoint
equation in turn, and then uses the adjoint solutions to compute the
requested gradient.

Other Controls are possible. For example, to compute the
gradient of the functional [image: J] with respect to the diffusivity
[image: \nu]:

dJdnu = compute_gradient(J, Control(nu))

Note that by default,
compute_gradient
deallocates all of the forward solutions it can as it goes along, to
minimise the memory footprint: however, if you try to run the adjoint
twice, it will give an error because it no longer has the necessary
forward variables:

>>> dJdic = compute_gradient(J, Control(u))
>>> dJdnu = compute_gradient(J, Control(nu))
Traceback (most recent call last):
...
libadjoint.exceptions.LibadjointErrorNeedValue: Need a value for
 w_2:1:6:Forward, but don't have one recorded.

w_2 refers to the Function u, and 1:6 means the sixth
(last) iteration associated with timestep 1; i.e., libadjoint is
telling us that it needs the terminal velocity, but it doesn’t have
it, as it’s been deallocated already in the first call to
compute_gradient. To
tell compute_gradient not
to deallocate the forward solutions as it goes along, pass
forget=False:

from dolfin import *
from dolfin_adjoint import *

n = 30
mesh = UnitSquareMesh(n, n)
V = VectorFunctionSpace(mesh, "CG", 2)

ic = project(Expression(("sin(2*pi*x[0])", "cos(2*pi*x[1])")), V)
u = Function(ic)
u_next = Function(V)
v = TestFunction(V)

nu = Constant(0.0001)

timestep = Constant(0.01)

F = (inner((u_next - u)/timestep, v)
 + inner(grad(u_next)*u_next, v)
 + nu*inner(grad(u_next), grad(v)))*dx

bc = DirichletBC(V, (0.0, 0.0), "on_boundary")

t = 0.0
end = 0.1
while (t <= end):
 solve(F == 0, u_next, bc)
 u.assign(u_next)
 t += float(timestep)

J = Functional(inner(u, u)*dx*dt[FINISH_TIME])
dJdic = compute_gradient(J, Control(u), forget=False)
dJdnu = compute_gradient(J, Control(nu))

Observe how the changes required from the original forward code to the
adjoined version are very small: with only four lines added to the
original code, we are able to compute the gradient information.

[image: more info] If you have been following along, you can download the
adjoined Burgers’ equation code and compare your results.

Other interfaces are available to manually compute the adjoint and
tangent linear solutions. For details, see the section on
lower-level interfaces.

Once you have computed the gradient, how do you know if it is correct?
If you were to pass an incorrect gradient to an optimisation
algorithm, the convergence would be hampered or it may fail
entirely. Therefore, before using any gradients, you should satisfy
yourself that they are correct. dolfin-adjoint offers easy routines to
rigorously verify the computed results, which is the topic of the
next section.

 © Copyright 2015, The dolfin-adjoint team.

documentation/debugging.html

 Navigation

 		
 index

 		
 modules |

 		 »

Debugging

dolfin-adjoint offers a thorough suite of debugging routines, to identify exactly why the adjoint might not be
correct.

Visualising the forward and adjoint systems

It is sometimes useful when debugging a problem to see dolfin-adjoint’s interpretation of your forward system,
and the other models it derives from that. The adj_html function dumps a HTML visualisation:

adj_html("forward.html", "forward")
adj_html("adjoint.html", "adjoint")

For example, let us include these in the Burgers’ equation example:

from dolfin import *
from dolfin_adjoint import *

parameters["num_threads"] = 8

adj_checkpointing(strategy='multistage', steps=11,
 snaps_on_disk=2, snaps_in_ram=2, verbose=True)

n = 30
mesh = UnitSquareMesh(n, n)
V = VectorFunctionSpace(mesh, "CG", 2)

ic = project(Expression(("sin(2*pi*x[0])", "cos(2*pi*x[1])")), V)

def main(nu):
 u = Function(ic)
 u_next = Function(V)
 v = TestFunction(V)

 timestep = Constant(0.01)

 F = (inner((u_next - u)/timestep, v)
 + inner(grad(u_next)*u_next, v)
 + nu*inner(grad(u_next), grad(v)))*dx

 bc = DirichletBC(V, (0.0, 0.0), "on_boundary")

 t = 0.0
 end = 0.1
 while (t <= end):
 solve(F == 0, u_next, bc)
 u.assign(u_next)
 t += float(timestep)
 adj_inc_timestep()

 return u

if __name__ == "__main__":
 nu = Constant(0.0001)
 u = main(nu)

 adj_html("forward.html", "forward")
 adj_html("adjoint.html", "adjoint")

 J = Functional(inner(u, u)*dx*dt[FINISH_TIME])
 dJdnu = compute_gradient(J, Control(nu))

 Jnu = assemble(inner(u, u)*dx)

 parameters["adjoint"]["stop_annotating"] = True
 def Jhat(nu):
 u = main(nu)
 return assemble(inner(u, u)*dx)

 conv_rate = taylor_test(Jhat, Control(nu), Jnu, dJdnu)

[image: more info] Download the code to dump the HTML visualisation.

The resulting forward and adjoint tables are available for inspection.

Each row corresponds to one equation solve. The variable being solved for is listed
at the top. If the variable is green, the value of that variable is recorded; if the
variable is red, the value of that variable is not recorded. To identify the dependencies
of each operator, hover over the block (on the diagonal and on the rhs) with the mouse.

Replaying the forward run

In order to derive a consistent adjoint model, dolfin-adjoint must correctly understand
your forward model. If dolfin-adjoint’s record of your forward model is incorrect, then it
cannot derive a correct adjoint model.

One way this could happen is if the forward model manually modifies the vector()
of a Function. For example, suppose that instead of using

u.assign(u_next)

the code used

u.vector()[:] = u_next.vector()

then the adjoint would be incorrect, as dolfin-adjoint cannot detect the modification:

$ python tutorial_incorrect.py
...
Convergence orders for Taylor remainder with adjoint information (should all be 2):
 [0.9544004555220237, 0.9767390399643741, 0.9882512926547484, 0.9940957131097388]

How would we detect this situation? To check the consistency of dolfin-adjoint’s annotation,
it can replay its interpretation of the forward model and compare the results to the real
forward model. To do this, use the replay_dolfin function:

success = replay_dolfin(tol=0.0, stop=True)

To see this in action, consider the following (incorrect) code:

from dolfin import *
from dolfin_adjoint import *

n = 30
mesh = UnitSquareMesh(n, n)
V = VectorFunctionSpace(mesh, "CG", 2)

ic = project(Expression(("sin(2*pi*x[0])", "cos(2*pi*x[1])")), V)

def main(nu):
 u = Function(ic)
 u_next = Function(V)
 v = TestFunction(V)

 timestep = Constant(0.01)

 F = (inner((u_next - u)/timestep, v)
 + inner(grad(u_next)*u_next, v)
 + nu*inner(grad(u_next), grad(v)))*dx

 bc = DirichletBC(V, (0.0, 0.0), "on_boundary")

 t = 0.0
 end = 0.1
 while (t <= end):
 solve(F == 0, u_next, bc)
 u.vector()[:] = u_next.vector()
 t += float(timestep)

 return u

if __name__ == "__main__":
 nu = Constant(0.0001)
 u = main(nu)

 success = replay_dolfin(tol=0.0, stop=True)

[image: more info] Download the broken adjoint code, where the error is detected by replay.

The replay detects that the interpretation and the real forward model diverge:

$ python tutorial8.py
...
Comparing w_4:1:0:Forward against previously recorded value:
 norm of the difference is 7.120735e-02 (> tolerance of 0.000000e+00)

w_4 refers to u_next (try printing it), and w_4:1:0 means
“the function w_4 at timestep 1 and iteration 0”. In this error message, libadjoint
tells us that the second solution of u_next is different in the replay than in the forward model.
Of course, this is because dolfin-adjoint’s knowledge of the value of u is wrong. With this
information, the user can inspect the code around the solution for u_next and examine
more closely.

Note that the replay cannot be exactly perfect when the model is run in parallel:
the order of the parallel reductions is nondeterministic, and so the answers can diverge
within floating-point roundoff. When debugging, run in serial.

Testing the derivatives of operators

If the replay works perfectly, but the adjoint is still incorrect, then there are very
few possibilities for what could be wrong. The only other major possibility is if the
model uses a discretisation that is not differentiable. In order to assemble the
adjoint equations, any operators in the forward model that depend on previously computed values
must be differentiated with respect to those values. If that dependency is not differentiable,
then no consistent derivative of the model exists.

A simple way to check the differentiability of your model is to set

parameters["adjoint"]["test_derivative"] = True

before solving any equations. Then, whenever libadjoint goes to assemble a term
involving the derivative of a nonlinear operator, it will apply the Taylor test
(at the level of the operator, instead of the whole model). For example, a typical error message
from the derivative test looks like

>>>>
Traceback (most recent call last):
...
libadjoint.exceptions.LibadjointWarnComparisonFailed: Expected the Taylor series remainder
 of operator 96c04e026b91e44576aa43ccef66e6a8 with respect to w_{16}:1:22:Forward to
 converge at second order, but got 1.000000
 (the error values are 1.393963e-11 and 6.969817e-12).

In this message, libadjoint tells us that the operator “96c04e026b91e44576aa43ccef66e6a8” (the names are automatically generated from the hash of the form) depends on the variable
w_{16}:1:22, but that its dependence is not differentiable (the Taylor remainder convergence test yielded 1, instead of 2). In this example, the operator is an upwinded DG
discretisation of the advection operator, and w_{16}:1:22 is an advecting velocity.

Note that even if the adjoint is not perfectly consistent (i.e., the Taylor remainders do not converge at second order), the resulting
gradients can still be “good enough” for the purposes of an optimisation algorithm. All that matters to the optimisation algorithm is
that the gradient provides a descent direction; if the Taylor remainders are “small”, then the convergence of the algorithm will usually
not be affected. Thus, the adjoint is generally still useful, even for nondifferentiable discretisations.

Note that a more rigorous approach for the case where the functional is nondifferentiable is to consider the functional gradient produced by the adjoint as a
subgradient. For more information, see the Wikipedia [http://en.wikipedia.org/wiki/Subgradient_method].

 © Copyright 2015, The dolfin-adjoint team.

_images/math/65868d23a5bfe5b3b2d819386b19c14fa36af134.png

_images/math/cbb80ad77aa7a5e227d5a46bc44d235284106cfc.png

_images/math/605c6cc4cd8c55455e4ad1671c56b85637afeb7e.png
dJ

_images/math/492acfd7ae78abdf5786de82bc50ba60bd04d57d.png

_images/math/f855f5fe4a7568d5259da3711b24b61ceba7afd8.png
uh

_images/math/e54dcf51b7972fa75da3014fccd825b952efdce7.png

search.html

 Navigation

 		
 index

 		
 modules |

 		 »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, The dolfin-adjoint team.

_images/math/8788b49197e86dea0f6a6708f60f27751786dbbb.png

frontpage.html

 Navigation

 		
 index

 		
 modules |

 		 »

 The dolfin-adjoint project automatically derives the discrete adjoint
and tangent linear models from a forward model written in the Python
interface to DOLFIN.

 		

 Sensitivity analysis on a Klein bottle.

 # Define variational formulation
F = inner(grad(u), grad(v))*dx - inner(m, v)*dx

Solve the variational form
solve(F == 0, u)

Compute the sensitivity
J = Functional(inner(u, u)*dx)
m = Control(f)
dJdm = compute_gradient(J, m)

Plot the results
plot(dJdm)

 [image:]

 		

 Growing the optimal heat-sink.

 # Define variational formulation
F = inner(grad(v), k(a)*grad(T))*dx - f*v*dx

Specify control and compliance as objective
J = Functional(f*T*dx)
m = Control(a)
Jhat = ReducedFunctional(J, m)

Run optimization
constraint = VolumeConstraint(V=0.4)
nlp = rfn.pyipopt_problem(bounds=(lb, ub),
 constraints=constraint)
a_opt = nlp.solve(full=False)

 [image:]

 © Copyright 2015, The dolfin-adjoint team.

_images/math/115cd6c619c189f96e04b2fa1359a43a95de9caa.png
Flu,m)

_images/math/97eaba833004f1bba3f245ae8fbd9b40fe52d502.png

_images/math/f622ac6ea9f75f9e7524fb75d1a699024215a9e5.png

_images/math/c7d37a3d2541522db084cf32bb4d060924302bac.png

_images/math/0314432487d75eebd128b26e842d4b0f5a119d69.png
T(m + hom) — T(m)

_images/math/0ebb67342b546ca42a1c634b1ef03c893c4cdedb.png

_images/math/1b93ea944d37a4a1a2a7f0dd47a42c2f50b4bc90.png
min —

[t —dpas+ 5 [

fds

_build/html/_static/highlight/README.html

 Navigation

 		
 index

 		
 modules |

 		 »

Highlight.js

Highlight.js highlights syntax in code examples on blogs, forums and,
in fact, on any web page. It’s very easy to use because it works
automatically: finds blocks of code, detects a language, highlights it.

Autodetection can be fine tuned when it fails by itself (see “Heuristics”).

Basic usage

Link the library and a stylesheet from your page and hook highlighting to
the page load event:

<link rel="stylesheet" href="styles/default.css">
<script src="highlight.pack.js"></script>
<script>hljs.initHighlightingOnLoad();</script>

This will highlight all code on the page marked up as <pre><code> .. </code></pre>.
If you use different markup or need to apply highlighting dynamically, read
“Custom initialization” below.

		You can download your own customized version of “highlight.pack.js” or
use the hosted one as described on the download page:
http://highlightjs.org/download/

		Style themes are available in the download package or as hosted files.
To create a custom style for your site see the class reference in the file
CSS classes reference [http://highlightjs.readthedocs.org/en/latest/css-classes-reference.html] from the downloaded package.

node.js

Highlight.js can be used under node.js. The package with all supported languages is
installable from NPM:

npm install highlight.js

Alternatively, you can build it from the source with only languages you need:

python3 tools/build.py -tnode lang1 lang2 ..

Using the library:

var hljs = require('highlight.js');

// If you know the language
hljs.highlight(lang, code).value;

// Automatic language detection
hljs.highlightAuto(code).value;

AMD

Highlight.js can be used with an AMD loader. You will need to build it from
source in order to do so:

$ python3 tools/build.py -tamd lang1 lang2 ..

Which will generate a build/highlight.pack.js which will load as an AMD
module with support for the built languages and can be used like so:

require(["highlight.js/build/highlight.pack"], function(hljs){

 // If you know the language
 hljs.highlight(lang, code).value;

 // Automatic language detection
 hljs.highlightAuto(code).value;
});

Tab replacement

You can replace TAB (‘\x09’) characters used for indentation in your code
with some fixed number of spaces or with a to give them special
styling:

<script type="text/javascript">
 hljs.configure({tabReplace: ' '}); // 4 spaces
 // ... or
 hljs.configure({tabReplace: '\t'});

 hljs.initHighlightingOnLoad();
</script>

Custom initialization

If you use different markup for code blocks you can initialize them manually
with highlightBlock(code) function. It takes a DOM element containing the
code to highlight and optionally a string with which to replace TAB
characters.

Initialization using, for example, jQuery might look like this:

$(document).ready(function() {
 $('pre code').each(function(i, e) {hljs.highlightBlock(e)});
});

You can use highlightBlock to highlight blocks dynamically inserted into
the page. Just make sure you don’t do it twice for already highlighted
blocks.

If your code container relies on
 tags instead of line breaks (i.e. if
it’s not <pre>) set the useBR option to true:

hljs.configure({useBR: true});
$('div.code').each(function(i, e) {hljs.highlightBlock(e)});

Heuristics

Autodetection of a code’s language is done using a simple heuristic:
the program tries to highlight a fragment with all available languages and
counts all syntactic structures that it finds along the way. The language
with greatest count wins.

This means that in short fragments the probability of an error is high
(and it really happens sometimes). In this cases you can set the fragment’s
language explicitly by assigning a class to the <code> element:

<pre><code class="html">...</code></pre>

You can use class names recommended in HTML5: “language-html”,
“language-php”. Classes also can be assigned to the <pre> element.

To disable highlighting of a fragment altogether use “no-highlight” class:

<pre><code class="no-highlight">...</code></pre>

Export

File export.html contains a little program that allows you to paste in a code
snippet and then copy and paste the resulting HTML code generated by the
highlighter. This is useful in situations when you can’t use the script itself
on a site.

Meta

		Version: 8.0

		URL: http://highlightjs.org/

For the license terms see LICENSE files.
For authors and contributors see AUTHORS.en.txt file.

 © Copyright 2015, The dolfin-adjoint team.

_images/math/75b43a8c57690a45bcf98ac65e1b922ce6401773.png
—HAu =71 mil
w=0 ondQ
a<f<b

_images/math/aabfa84180467cf04c692b4533d5204532aac20b.png

_images/math/45e6bc2bf30f9dd00b5de15ccf4af6a384b16ec0.png
e+ (1 —€)aP

_images/math/4325e3849eed3bb86737392ef01f9d4fa9acbd19.png
a € [0,00)

_images/math/ef7c3d05bc26cc381f09d205caf92c73c7ae20f0.png

_build/html/_static/highlight/CHANGES.html

 Navigation

 		
 index

 		
 modules |

 		 »

Version 8.0 beta

This new major release is quite a big overhaul bringing both new features and
some backwards incompatible changes. However, chances are that the majority of
users won’t be affected by the latter: the basic scenario described in the
README is left intact.

Here’s what did change in an incompatible way:

		We’re now prefixing all classes located in CSS classes reference [http://highlightjs.readthedocs.org/en/latest/css-classes-reference.html] with
hljs-, by default, because some class names would collide with other
people’s stylesheets. If you were using an older version, you might still want
the previous behavior, but still want to upgrade. To suppress this new
behavior, you would initialize like so:

<script type="text/javascript">
 hljs.configure({classPrefix: ''});
 hljs.initHighlightingOnLoad();
</script>

		tabReplace and useBR that were used in different places are also unified
into the global options object and are to be set using configure(options).
This function is documented in our API docs [http://highlightjs.readthedocs.org/en/latest/api.html]. Also note that these
parameters are gone from highlightBlock and fixMarkup which are now also
rely on configure.

		We removed public-facing (though undocumented) object hljs.LANGUAGES which
was used to register languages with the library in favor of two new methods:
registerLanguage and getLanguage. Both are documented in our API docs [http://highlightjs.readthedocs.org/en/latest/api.html].

		Result returned from highlight and highlightAuto no longer contains two
separate attributes contributing to relevance score, relevance and
keyword_count. They are now unified in relevance.

Another technically compatible change that nonetheless might need attention:

		The structure of the NPM package was refactored, so if you had installed it
locally, you’ll have to update your paths. The usual require('highlight.js')
works as before. This is contributed by Dmitry Smolin [https://github.com/dimsmol].

New features:

		Languages now can be recognized by multiple names like “js” for JavaScript or
“html” for, well, HTML (which earlier insisted on calling it “xml”). These
aliases can be specified in the class attribute of the code container in your
HTML as well as in various API calls. For now there are only a few very common
aliases but we’ll expand it in the future. All of them are listed in the
[class reference][].

		Language detection can now be restricted to a subset of languages relevant in
a given context — a web page or even a single highlighting call. This is
especially useful for node.js build that includes all the known languages.
Another example is a StackOverflow-style site where users specify languages
as tags rather than in the markdown-formatted code snippets. This is
documented in the [API reference][] (see methods highlightAuto and
configure).

		Language definition syntax streamlined with variants [https://groups.google.com/d/topic/highlightjs/VoGC9-1p5vk/discussion] and
beginKeywords [https://github.com/isagalaev/highlight.js/commit/6c7fdea002eb3949577a85b3f7930137c7c3038d].

New languages and styles:

		Oxygene by Carlo Kok [https://github.com/carlokok]

		Mathematica by Daniel Kvasnička [https://github.com/dkvasnicka]

		Autohotkey by Seongwon Lee [https://github.com/dlimpid]

		Atelier family of styles in 10 variants by Bram de Haan [https://github.com/atelierbram]

		Paraíso styles by Jan T. Sott [https://github.com/idleberg]

Miscelleanous improvements:

		Highlighting => prompts in Clojure.

		Jeremy Hull [https://github.com/sourrust] fixed a lot of styles for consistency.

		Finally, highlighting PHP and HTML mixed in peculiar ways [https://twitter.com/highlightjs/status/408890903017689088].

		Objective C and C# now properly highlight titles in method definition.

		Big overhaul of relevance counting for a number of languages. Please do report
bugs about mis-detection of non-trivial code snippets!

Version 7.5

A catch-up release dealing with some of the accumulated contributions. This one
is probably will be the last before the 8.0 which will be slightly backwards
incompatible regarding some advanced use-cases.

One outstanding change in this version is the addition of 6 languages to the
hosted script [http://highlightjs.org/download/]: Markdown, ObjectiveC, CoffeeScript, Apache, Nginx and
Makefile. It now weighs about 6K more but we’re going to keep it under 30K.

New languages:

		OCaml by Mehdi Dogguy [https://github.com/mehdid] and Nicolas Braud-Santoni [https://github.com/nbraud]

		LiveCode Server [http://livecode.com/developers/guides/server/] by Ralf Bitter [https://github.com/revig]

		Scilab by Sylvestre Ledru [https://github.com/sylvestre]

		basic support for Makefile by Ivan Sagalaev [https://github.com/isagalaev]

Improvements:

		Ruby’s got support for characters like ?A, ?1, ?\012 etc. and %r{..}
regexps.

		Clojure now allows a function call in the beginning of s-expressions
(($filter "myCount") (arr 1 2 3 4 5)).

		Haskell’s got new keywords and now recognizes more things like pragmas,
preprocessors, modules, containers, FFIs etc. Thanks to Zena Treep [https://github.com/treep]
for the implementation and to Jeremy Hull [https://github.com/sourrust] for guiding it.

		Miscelleanous fixes in PHP, Brainfuck, SCSS, Asciidoc, CMake, Python and F#.

New core developers

The latest long period of almost complete inactivity in the project coincided
with growing interest to it led to a decision that now seems completely obvious:
we need more core developers.

So without further ado let me welcome to the core team two long-time
contributors: Jeremy Hull [https://github.com/sourrust] and Oleg
Efimov [https://github.com/sannis].

Hope now we’ll be able to work through stuff faster!

P.S. The historical commit is here [https://github.com/isagalaev/highlight.js/commit/f3056941bda56d2b72276b97bc0dd5f230f2473f] for the record.

Version 7.4

This long overdue version is a snapshot of the current source tree with all the
changes that happened during the past year. Sorry for taking so long!

Along with the changes in code highlight.js has finally got its new home at
http://highlightjs.org/, moving from its craddle on Software Maniacs which it
outgrew a long time ago. Be sure to report any bugs about the site to
mailto:info@highlightjs.org.

On to what’s new…

New languages:

		Handlebars templates by Robin Ward [https://github.com/eviltrout]

		Oracle Rules Language by Jason Jacobson [https://github.com/jayce7]

		F# by Joans Follesø [https://github.com/follesoe]

		AsciiDoc and Haml by Dan Allen [https://github.com/mojavelinux]

		Lasso by Eric Knibbe [https://github.com/EricFromCanada]

		SCSS by Kurt Emch [https://github.com/kemch]

		VB.NET by Poren Chiang [https://github.com/rschiang]

		Mizar by Kelley van Evert [https://github.com/kelleyvanevert]

New style themes:

		Monokai Sublime by noformnocontent [http://nn.mit-license.org/]

		Railscasts by Damien White [https://github.com/visoft]

		Obsidian by Alexander Marenin [https://github.com/ioncreature]

		Docco by Simon Madine [https://github.com/thingsinjars]

		Mono Blue by Ivan Sagalaev [https://github.com/isagalaev] (uses a single color hue for everything)

		Foundation by Dan Allen [https://github.com/mojavelinux]

Other notable changes:

		Corrected many corner cases in CSS.

		Dropped Python 2 version of the build tool.

		Implemented building for the AMD format.

		Updated Rust keywords (thanks to Dmitry Medvinsky [https://github.com/dmedvinsky]).

		Literal regexes can now be used in language definitions.

		CoffeeScript highlighting is now significantly more robust and rich due to
input from Cédric Néhémie [https://github.com/abe33].

Version 7.3

		Since this version highlight.js no longer works in IE version 8 and older.
It’s made it possible to reduce the library size and dramatically improve code
readability and made it easier to maintain. Time to go forward!

		New languages: AppleScript (by Nathan Grigg [https://github.com/nathan11g] and Dr. Drang [https://github.com/drdrang]) and
Brainfuck (by Evgeny Stepanischev [https://github.com/bolknote]).

		Improvements to existing languages:
		interpreter prompt in Python (>>> and ...)

		@-properties and classes in CoffeeScript

		E4X in JavaScript (by Oleg Efimov [https://github.com/Sannis])

		new keywords in Perl (by Kirk Kimmel [https://github.com/kimmel])

		big Ruby syntax update (by Vasily Polovnyov [https://github.com/vast])

		small fixes in Bash

		Also Oleg Efimov did a great job of moving all the docs for language and style
developers and contributors from the old wiki under the source code in the
“docs” directory. Now these docs are nicely presented at
http://highlightjs.readthedocs.org/.

Version 7.2

A regular bug-fix release without any significant new features. Enjoy!

Version 7.1

A Summer crop:

		Marc Fornos [https://github.com/mfornos] made the definition for Clojure along with the matching
style Rainbow (which, of course, works for other languages too).

		CoffeeScript support continues to improve getting support for regular
expressions.

		Yoshihide Jimbo ported to highlight.js five Tomorrow styles [http://jmblog.github.com/color-themes-for-highlightjs/] from the
project by Chris Kempson [https://github.com/ChrisKempson/Tomorrow-Theme].

		Thanks to Casey Duncun [https://github.com/caseman] the library can now be built in the popular
AMD format [http://requirejs.org/docs/whyamd.html].

		And last but not least, we’ve got a fair number of correctness and consistency
fixes, including a pretty significant refactoring of Ruby.

Version 7.0

The reason for the new major version update is a global change of keyword syntax
which resulted in the library getting smaller once again. For example, the
hosted build is 2K less than at the previous version while supporting two new
languages.

Notable changes:

		The library now works not only in a browser but also with node.js [http://nodejs.org/]. It is
installable with npm install highlight.js. API [http://softwaremaniacs.org/wiki/doku.php/highlight.js:api] docs are available on our
wiki.

		The new unique feature (apparently) among syntax highlighters is highlighting
HTTP headers and an arbitrary language in the request body. The most useful
languages here are XML and JSON both of which highlight.js does support.
Here’s the detailed post [http://softwaremaniacs.org/blog/2012/05/10/http-and-json-in-highlight-js/en/] about the feature.

		Two new style themes: a dark “south” Pojoaque [http://web-cms-designs.com/ftopict-10-pojoaque-style-for-highlight-js-code-highlighter.html] by Jason Tate and an
emulation ofXCode IDE by Angel Olloqui [https://github.com/angelolloqui].

		Three new languages: D by Aleksandar Ružičić [https://github.com/raleksandar], R by Joe Cheng [https://github.com/jcheng5]
and GLSL by Sergey Tikhomirov [https://github.com/tikhomirov].

		Nginx syntax has become a million times smaller and more universal thanks to
remaking it in a more generic manner that doesn’t require listing all the
directives in the known universe.

		Function titles are now highlighted in PHP.

		Haskell and VHDL were significantly reworked to be more rich and correct
by their respective maintainers Jeremy Hull [https://github.com/sourrust] and Igor Kalnitsky [https://github.com/ikalnitsky].

And last but not least, many bugs have been fixed around correctness and
language detection.

Overall highlight.js currently supports 51 languages and 20 style themes.

Version 6.2

A lot of things happened in highlight.js since the last version! We’ve got nine
new contributors, the discussion group came alive, and the main branch on GitHub
now counts more than 350 followers. Here are most significant results coming
from all this activity:

		5 (five!) new languages: Rust, ActionScript, CoffeeScript, MatLab and
experimental support for markdown. Thanks go to Andrey Vlasovskikh [https://github.com/vlasovskikh],
Alexander Myadzel [https://github.com/myadzel], Dmytrii Nagirniak [https://github.com/dnagir], Oleg Efimov [https://github.com/Sannis], Denis
Bardadym [https://github.com/btd] and John Crepezzi [https://github.com/jcheng5].

		2 new style themes: Monokai by Luigi Maselli [http://grigio.org/] and stylistic imitation of
another well-known highlighter Google Code Prettify by Aahan Krish [https://github.com/geekpanth3r].

		A vast number of correctness fixes and code refactorings [https://github.com/isagalaev/highlight.js/commits/], mostly made
by Oleg Efimov [https://github.com/Sannis] and Evgeny Stepanischev [https://github.com/bolknote].

Version 6.1 — Solarized

Jeremy Hull [https://github.com/sourrust] has implemented my dream feature — a port of Solarized [http://ethanschoonover.com/solarized]
style theme famous for being based on the intricate color theory to achieve
correct contrast and color perception. It is now available for highlight.js in
both variants — light and dark.

This version also adds a new original style Arta. Its author pumbur maintains a
heavily modified fork of highlight.js [https://github.com/pumbur/highlight.js] on GitHub.

Version 6.0

New major version of the highlighter has been built on a significantly
refactored syntax. Due to this it’s even smaller than the previous one while
supporting more languages!

New languages are:

		Haskell by Jeremy Hull [https://github.com/sourrust]

		Erlang in two varieties — module and REPL — made collectively by Nikolay
Zakharov [http://desh.su/], Dmitry Kovega [https://github.com/arhibot] and Sergey Ignatov [https://github.com/ignatov]

		Objective C by Valerii Hiora [https://github.com/vhbit]

		Vala by Antono Vasiljev [https://github.com/antono]

		Go by Stephan Kountso [https://github.com/steplg]

Also this version is marginally faster and fixes a number of small long-standing
bugs.

Developer overview of the new language syntax is available in a blog post about
recent beta release [http://softwaremaniacs.org/blog/2011/04/25/highlight-js-60-beta/en/].

P.S. New version is not yet available on a Yandex’ CDN, so for now you have to
download your own copy [http://highlightjs.org/download/].

Version 5.14

Fixed bugs in HTML/XML detection and relevance introduced in previous
refactoring.

Also test.html now shows the second best result of language detection by
relevance.

Version 5.13

Past weekend began with a couple of simple additions for existing languages but
ended up in a big code refactoring bringing along nice improvements for language
developers.

For users

		Description of C++ has got new keywords from the upcoming C++ 0x [http://ru.wikipedia.org/wiki/C%2B%2B0x] standard.

		Description of HTML has got new tags from HTML 5 [http://en.wikipedia.org/wiki/HTML5].

		CSS-styles have been unified to use consistent padding and also have lost
pop-outs with names of detected languages.

		Igor Kalnitsky [https://github.com/ikalnitsky] has sent two new language descriptions: CMake и VHDL.

This makes total number of languages supported by highlight.js to reach 35.

Bug fixes:

		Custom classes on <pre> tags are not being overridden anymore

		More correct highlighting of code blocks inside non-<pre> containers:
highlighter now doesn’t insist on replacing them with its own container and
just replaces the contents.

		Small fixes in browser compatibility and heuristics.

For developers

The most significant change is the ability to include language submodes right
under contains instead of defining explicit named submodes in the main array:

contains: [
 'string',
 'number',
 {begin: '\\n', end: hljs.IMMEDIATE_RE}
]

This is useful for auxiliary modes needed only in one place to define parsing.
Note that such modes often don’t have className and hence won’t generate a
separate in the resulting markup. This is similar in effect to
noMarkup: true. All existing languages have been refactored accordingly.

Test file test.html has at last become a real test. Now it not only puts the
detected language name under the code snippet but also tests if it matches the
expected one. Test summary is displayed right above all language snippets.

CDN

Fine people at Yandex [http://yandex.com/] agreed to host highlight.js on their big fast servers.
Link up [http://softwaremaniacs.org/soft/highlight/en/download/]!

Version 5.10 — “Paris”.

Though I’m on a vacation in Paris, I decided to release a new version with a
couple of small fixes:

		Tomas Vitvar discovered that TAB replacement doesn’t always work when used
with custom markup in code

		SQL parsing is even more rigid now and doesn’t step over SmallTalk in tests

Version 5.9

A long-awaited version is finally released.

New languages:

		Andrew Fedorov made a definition for Lua

		a long-time highlight.js contributor Peter Leonov [http://kung-fu-tzu.ru/] made a definition for
Nginx config

		Vladimir Moskva [http://fulc.ru/] made a definition for TeX

Fixes for existing languages:

		Loren Segal [http://gnuu.org/] reworked the Ruby definition and added highlighting for
YARD [http://yardoc.org/] inline documentation

		the definition of SQL has become more solid and now it shouldn’t be overly
greedy when it comes to language detection

The highlighter has become more usable as a library allowing to do highlighting
from initialization code of JS frameworks and in ajax methods (see.
readme.eng.txt).

Also this version drops support for the WordPress [http://wordpress.org/] plugin. Everyone is
welcome to pick up its maintenance [http://softwaremaniacs.org/blog/2012/05/10/http-and-json-in-highlight-js/en/] if needed.

Version 5.8

		Jan Berkel has contributed a definition for Scala. +1 to hotness!

		All CSS-styles are rewritten to work only inside <pre> tags to avoid
conflicts with host site styles.

Version 5.7.

Fixed escaping of quotes in VBScript strings.

Version 5.5

This version brings a small change: now .ini-files allow digits, underscores and
square brackets in key names.

Version 5.4

Fixed small but upsetting bug in the packer which caused incorrect highlighting
of explicitly specified languages. Thanks to Andrew Fedorov for precise
diagnostics!

Version 5.3

The version to fulfil old promises.

The most significant change is that highlight.js now preserves custom user
markup in code along with its own highlighting markup. This means that now it’s
possible to use, say, links in code. Thanks to Vladimir Dolzhenko [http://dolzhenko.blogspot.com/] for the
initial proposal [https://github.com/isagalaev/highlight.js/commit/f3056941bda56d2b72276b97bc0dd5f230f2473f] and for making a proof-of-concept patch.

Also in this version:

		Vasily Polovnyov [http://vasily.polovnyov.ru/] has sent a GitHub-like style and has implemented
support for CSS @-rules and Ruby symbols.

		Yura Zaripov has sent two styles: Brown Paper and School Book.

		Oleg Volchkov has sent a definition for Parser 3 [http://www.parser.ru/].

Version 5.2

		at last it’s possible to replace indentation TABs with something sensible (e.g. 2 or 4 spaces)

		new keywords and built-ins for 1C by Sergey Baranov

		a couple of small fixes to Apache highlighting

Version 5.1

This is one of those nice version consisting entirely of new and shiny
contributions!

		Vladimir Ermakov [http://vehq.ru/about/] created highlighting for AVR Assembler

		Ruslan Keba [http://rukeba.com/] created highlighting for Apache config file. Also his
original visual style for it is now available for all highlight.js languages
under the name “Magula”.

		Shuen-Huei Guan [http://drakeguan.org/] (aka Drake) sent new keywords for RenderMan
languages. Also thanks go to Konstantin Evdokimenko [http://k-evdokimenko.moikrug.ru/] for his advice on
the matter.

Version 5.0

The main change in the new major version of highlight.js is a mechanism for
packing several languages along with the library itself into a single compressed
file. Now sites using several languages will load considerably faster because
the library won’t dynamically include additional files while loading.

Also this version fixes a long-standing bug with Javascript highlighting that
couldn’t distinguish between regular expressions and division operations.

And as usually there were a couple of minor correctness fixes.

Great thanks to all contributors! Keep using highlight.js.

Version 4.3

This version comes with two contributions from Jason Diamond [http://jason.diamond.name/weblog/]:

		language definition for C# (yes! it was a long-missed thing!)

		Visual Studio-like highlighting style

Plus there are a couple of minor bug fixes for parsing HTML and XML attributes.

Version 4.2

The biggest news is highlighting for Lisp, courtesy of Vasily Polovnyov. It’s
somewhat experimental meaning that for highlighting “keywords” it doesn’t use
any pre-defined set of a Lisp dialect. Instead it tries to highlight first word
in parentheses wherever it makes sense. I’d like to ask people programming in
Lisp to confirm if it’s a good idea and send feedback to the forum [http://softwaremaniacs.org/forum/highlightjs/].

Other changes:

		Smalltalk was excluded from DEFAULT_LANGUAGES to save traffic

		Vladimir Epifanov [http://voldmar.ya.ru/] has implemented javascript style switcher for
test.html

		comments now allowed inside Ruby function definition

		MEL [http://en.wikipedia.org/wiki/Maya_Embedded_Language] language from Shuen-Huei Guan [http://drakeguan.org/]

		whitespace now allowed between <pre> and <code>

		better auto-detection of C++ and PHP

		HTML allows embedded VBScript (<% .. %>)

Version 4.1

Languages:

		Bash from Vah

		DOS bat-files from Alexander Makarov (Sam)

		Diff files from Vasily Polovnyov

		Ini files from myself though initial idea was from Sam

Styles:

		Zenburn from Vladimir Epifanov, this is an imitation of a
well-known theme for Vim [http://en.wikipedia.org/wiki/Zenburn].

		Ascetic from myself, as a realization of ideals of non-flashy highlighting:
just one color in only three gradations :-)

In other news. One small bug [http://softwaremaniacs.org/forum/viewtopic.php?id=1823] was fixed, built-in keywords were added for
Python and C++ which improved auto-detection for the latter (it was shame that
my wife’s blog [http://alenacpp.blogspot.com/] had issues with it from time to time). And lastly
thanks go to Sam for getting rid of my stylistic comments in code that were
getting in the way of JSMin [http://code.google.com/p/jsmin-php/].

Version 4.0

New major version is a result of vast refactoring and of many contributions.

Visible new features:

		Highlighting of embedded languages. Currently is implemented highlighting of
Javascript and CSS inside HTML.

		Bundled 5 ready-made style themes!

Invisible new features:

		Highlight.js no longer pollutes global namespace. Only one object and one
function for backward compatibility.

		Performance is further increased by about 15%.

Changing of a major version number caused by a new format of language definition
files. If you use some third-party language files they should be updated.

Version 3.5

A very nice version in my opinion fixing a number of small bugs and slightly
increased speed in a couple of corner cases. Thanks to everybody who reports
bugs in he forum [http://softwaremaniacs.org/forum/highlightjs/] and by email!

There is also a new language — XML. A custom XML formerly was detected as HTML
and didn’t highlight custom tags. In this version I tried to make custom XML to
be detected and highlighted by its own rules. Which by the way include such
things as CDATA sections and processing instructions (<? ... ?>).

Version 3.3

Vladimir Gubarkov [http://xonixx.blogspot.com/] has provided an interesting and useful addition.
File export.html contains a little program that shows and allows to copy and
paste an HTML code generated by the highlighter for any code snippet. This can
be useful in situations when one can’t use the script itself on a site.

Version 3.2 consists completely of contributions:

		Vladimir Gubarkov has described SmallTalk

		Yuri Ivanov has described 1C

		Peter Leonov has packaged the highlighter as a Firefox extension

		Vladimir Ermakov has compiled a mod for phpBB

Many thanks to you all!

Version 3.1

Three new languages are available: Django templates, SQL and Axapta. The latter
two are sent by Dmitri Roudakov [https://github.com/isagalaev/highlight.js/commit/f3056941bda56d2b72276b97bc0dd5f230f2473f]. However I’ve almost entirely rewrote an
SQL definition but I’d never started it be it from the ground up :-)

The engine itself has got a long awaited feature of grouping keywords
(“keyword”, “built-in function”, “literal”). No more hacks!

Version 3.0

It is major mainly because now highlight.js has grown large and has become
modular. Now when you pass it a list of languages to highlight it will
dynamically load into a browser only those languages.

Also:

		Konstantin Evdokimenko of RibKit [http://ribkit.sourceforge.net/] project has created a highlighting for
RenderMan Shading Language and RenderMan Interface Bytestream. Yay for more
languages!

		Heuristics for C++ and HTML got better.

		I’ve implemented (at last) a correct handling of backslash escapes in C-like
languages.

There is also a small backwards incompatible change in the new version. The
function initHighlighting that was used to initialize highlighting instead of
initHighlightingOnLoad a long time ago no longer works. If you by chance still
use it — replace it with the new one.

Version 2.9

Highlight.js is a parser, not just a couple of regular expressions. That said
I’m glad to announce that in the new version 2.9 has support for:

		in-string substitutions for Ruby – #{...}

		strings from from numeric symbol codes (like #XX) for Delphi

Version 2.8

A maintenance release with more tuned heuristics. Fully backwards compatible.

Version 2.7

		Nikita Ledyaev presents highlighting for VBScript, yay!

		A couple of bugs with escaping in strings were fixed thanks to Mickle

		Ongoing tuning of heuristics

Fixed bugs were rather unpleasant so I encourage everyone to upgrade!

Version 2.4

		Peter Leonov provides another improved highlighting for Perl

		Javascript gets a new kind of keywords — “literals”. These are the words
“true”, “false” and “null”

Also highlight.js homepage now lists sites that use the library. Feel free to
add your site by dropping me a message until I find the time to build a
submit form.

Version 2.3

This version fixes IE breakage in previous version. My apologies to all who have
already downloaded that one!

Version 2.2

		added highlighting for Javascript

		at last fixed parsing of Delphi’s escaped apostrophes in strings

		in Ruby fixed highlighting of keywords ‘def’ and ‘class’, same for ‘sub’ in
Perl

Version 2.0

		Ruby support by Anton Kovalyov [https://github.com/geekpanth3r]

		speed increased by orders of magnitude due to new way of parsing

		this same way allows now correct highlighting of keywords in some tricky
places (like keyword “End” at the end of Delphi classes)

Version 1.0

Version 1.0 of javascript syntax highlighter is released!

It’s the first version available with English description. Feel free to post
your comments and question to highlight.js forum [http://softwaremaniacs.org/forum/viewforum.php?id=6]. And don’t be afraid
if you find there some fancy Cyrillic letters – it’s for Russian users too :-)

 © Copyright 2015, The dolfin-adjoint team.

_images/math/7a1345a9e2b2a527dc43115939b86030308d05b1.png
L (u—uﬂ|d)vdﬂ+u/Vu VodQ =0
step

_images/math/19bc0073dde1bcd1a8e6a32b251e80cced668f04.png

_build/html/_static/highlight/README.ru.html

 Navigation

 		
 index

 		
 modules |

 		 »

Highlight.js

Highlight.js нужен для подсветки синтаксиса в примерах кода в блогах,
форумах и вообще на любых веб-страницах. Пользоваться им очень просто,
потому что работает он автоматически: сам находит блоки кода, сам
определяет язык, сам подсвечивает.

Автоопределением языка можно управлять, когда оно не справляется само (см.
дальше “Эвристика”).

Простое использование

Подключите библиотеку и стиль на страницу и повесть вызов подсветки на
загрузку страницы:

<link rel="stylesheet" href="styles/default.css">
<script src="highlight.pack.js"></script>
<script>hljs.initHighlightingOnLoad();</script>

Весь код на странице, обрамлённый в теги <pre><code> .. </code></pre>
будет автоматически подсвечен. Если вы используете другие теги или хотите
подсвечивать блоки кода динамически, читайте “Инициализацию вручную” ниже.

		Вы можете скачать собственную версию “highlight.pack.js” или сослаться
на захостенный файл, как описано на странице загрузки:
http://highlightjs.org/download/

		Стилевые темы можно найти в загруженном архиве или также использовать
захостенные. Чтобы сделать собственный стиль для своего сайта, вам
будет полезен CSS classes reference [http://highlightjs.readthedocs.org/en/latest/css-classes-reference.html], который тоже есть в архиве.

node.js

Highlight.js можно использовать в node.js. Библиотеку со всеми возможными языками можно
установить с NPM:

npm install highlight.js

Также её можно собрать из исходников с только теми языками, которые нужны:

python3 tools/build.py -tnode lang1 lang2 ..

Использование библиотеки:

var hljs = require('highlight.js');

// Если вы знаете язык
hljs.highlight(lang, code).value;

// Автоопределение языка
hljs.highlightAuto(code).value;

AMD

Highlight.js можно использовать с загрузчиком AMD-модулей. Для этого его
нужно собрать из исходников следующей командой:

$ python3 tools/build.py -tamd lang1 lang2 ..

Она создаст файл build/highlight.pack.js, который является загружаемым
AMD-модулем и содержит все выбранные при сборке языки. Используется он так:

require(["highlight.js/build/highlight.pack"], function(hljs){

 // Если вы знаете язык
 hljs.highlight(lang, code).value;

 // Автоопределение языка
 hljs.highlightAuto(code).value;
});

Замена TABов

Также вы можете заменить символы TAB (‘\x09’), используемые для отступов, на
фиксированное количество пробелов или на отдельный , чтобы задать ему
какой-нибудь специальный стиль:

<script type="text/javascript">
 hljs.configure({tabReplace: ' '}); // 4 spaces
 // ... or
 hljs.configure({tabReplace: '\t'});

 hljs.initHighlightingOnLoad();
</script>

Инициализация вручную

Если вы используете другие теги для блоков кода, вы можете инициализировать их
явно с помощью функции highlightBlock(code). Она принимает DOM-элемент с
текстом расцвечиваемого кода и опционально - строчку для замены символов TAB.

Например с использованием jQuery код инициализации может выглядеть так:

$(document).ready(function() {
 $('pre code').each(function(i, e) {hljs.highlightBlock(e)});
});

highlightBlock можно также использовать, чтобы подсветить блоки кода,
добавленные на страницу динамически. Только убедитесь, что вы не делаете этого
повторно для уже раскрашенных блоков.

Если ваш блок кода использует
 вместо переводов строки (т.е. если это не
<pre>), включите опцию useBR:

hljs.configure({useBR: true});
$('div.code').each(function(i, e) {hljs.highlightBlock(e)});

Эвристика

Определение языка, на котором написан фрагмент, делается с помощью
довольно простой эвристики: программа пытается расцветить фрагмент всеми
языками подряд, и для каждого языка считает количество подошедших
синтаксически конструкций и ключевых слов. Для какого языка нашлось больше,
тот и выбирается.

Это означает, что в коротких фрагментах высока вероятность ошибки, что
периодически и случается. Чтобы указать язык фрагмента явно, надо написать
его название в виде класса к элементу <code>:

<pre><code class="html">...</code></pre>

Можно использовать рекомендованные в HTML5 названия классов:
“language-html”, “language-php”. Также можно назначать классы на элемент
<pre>.

Чтобы запретить расцветку фрагмента вообще, используется класс “no-highlight”:

<pre><code class="no-highlight">...</code></pre>

Экспорт

В файле export.html находится небольшая программка, которая показывает и дает
скопировать непосредственно HTML-код подсветки для любого заданного фрагмента кода.
Это может понадобится например на сайте, на котором нельзя подключить сам скрипт
highlight.js.

Координаты

		Версия: 8.0

		URL: http://highlightjs.org/

Лицензионное соглашение читайте в файле LICENSE.
Список авторов и соавторов читайте в файле AUTHORS.ru.txt

 © Copyright 2015, The dolfin-adjoint team.

_images/math/82eab8ce6aaa458582c0a6470664c38bbd9277bf.png
a7
dm
4

)\ ! OF(u, m) N aJ
am om

_images/math/3b11328a768149de902d2d078c3b2ade9f6c9a2c.png

_images/math/9590df87fdcf91b34210ad3c8b3a37dde0b36184.png

_images/math/59490b7bb52b9c30d7219e725658955a46c26ec7.png
OF (u,m) >" OF (u,m)

_images/math/a73383b8466ffd8fa8546ec35abbbd2cbb3cd1e4.png

_images/math/0bbc923ea535e32099f9647c01e285ee40f8ae12.png
)\

_images/math/ecda7f56e301b2b2b6fd99b3d5c9d72800959818.png
dup = arg max (dur, dur)
Wuoll

_images/math/8603f44ca5393a916896a862dd94942fc044b7b7.png

_images/math/aceac0989fad0ca5c2c55452f2052626a2bae2b6.png
OF(u,m)/0u

_images/math/eea931ec7f7f873b89afb48d120c5e7c3a0e3082.png
dJ(u,m)/dm

_images/math/493d2b5eaf6a36e430643e6a474a5dcddf623286.png
alp)u —pVu+Vp=f inQ
diviu)=0 onQ
u = on 60

_images/math/62de19842e21e76092a457ca882df43cc46953a3.png

_images/math/833b01a99a6a252deab760abd545f7ea1fbb4516.png
in Qx(0,7).
for Q x {0}

_images/math/ffe4050c6c5758eeb53632179d5d68ad593e7acb.png
S/T/\u\zdzdt
E/T/\y—z\zdzdti»z []
J(yw) = 5 []

_images/math/63a2dc9bef8fb0df3e32d96af203778e7fe05689.png

_images/math/c04768046ea8ec3d9e32d092acdc277a9d4a315d.png

_images/math/60a0382ebc13e52d49be014f08676ef7e7cd1992.png

_images/math/f6afbcc4bc24941c37e773e55bf362cc1776ea4c.png

_images/math/ecc9c9394fae68141949cd00104f947f60a34a0a.png
a,b: Q) — K

support/index.html

 Navigation

 		
 index

 		
 modules |

 		 »

Support

Having issues?

Do you wonder about how something works, whether some feature is
supported or why you are getting an error? Feel free to ask on the
bitbucket bugtracker [https://bitbucket.org/dolfin-adjoint/dolfin-adjoint/issues].

Checklist when asking a question

We want to help you; by making sure that you provide us with enough
information, you are more likely to get the answer you are looking
for. If you have encountered an error or a problem that you can’t figure
out, please make sure to include the following in your description of
the problem:

		A minimal, running code example that reproduces the error.

		The error message.

		The versions of dolfin, dolfin-adjoint, and libadjoint.

Contacting the authors

Patrick would love to hear any stories of scientists and engineers
using dolfin-adjoint, good and bad. Please feel free to contact him!

 © Copyright 2015, The dolfin-adjoint team.

_images/math/49345c85f026b08458e919d8075a822babc702e2.png
A

u<b

Y € (),

_images/math/2bc2d2b207f861ff1c70724ebb8a9cd6831c0d52.png

_images/math/e35b50a84f42e16450ef05999cb1a373d6ac2ff0.png

_images/math/377386b4082abbed4b67f5bd7bc38647c5b3c041.png

_images/math/a71d55c61558d0a1f9b4c0a3308aff476a67ddca.png
OF(u,m)/0Om

_images/math/7ab3d2dee559e4d6b962eea91f7da412f061f0c3.png
x — U

_images/math/8140fc88ddede41552f15654e5bcd7beac8fbb3e.png

_images/math/160e1faaa238f8455e08ad5176eac0e95404ed7b.png
q € ()

_images/math/343e59a05ddde1e5914c9e3fd26258de9f70b6e7.png

_images/math/e29fbc913b9e1ff129d22e1b0c0c35023b51f3f9.png
min J(u,w) over (u,w)

_images/math/f574498915fa9e02eeb5141c24835d077eba3e75.png

_images/math/6b1566bbfb2bfc9fa0c364e5dd721ac90925d928.png

_images/math/7504089b4aa65dcbf5d228267d3bb472ac38dd8c.png
Flu,m)

_images/math/b59d704360bae4d4312e7ea24a70db9c72849396.png
~)

_images/math/faebbcf663fe1e0c5290dcb40f830cc33b17b530.png

_images/math/71bd2b68c83331403ac284ee56eefd20ca60eb18.png

_images/math/2dda277766d3c8d6d06591a7b5ce1b6afbbe50a2.png

_images/math/1a534f73d7999c523b01512801d3bda18adee3b7.png

about/index.html

 Navigation

 		
 index

 		
 modules |

 		 »

About

The dolfin-adjoint project automatically derives the discrete
adjoint and tangent linear models from a forward model written in
the Python interface to DOLFIN [http://fenicsproject.org].

These adjoint and tangent linear models are key ingredients in many
important algorithms, such as data assimilation, optimal control,
sensitivity analysis, design optimisation, and error estimation. Such
models have made an enormous impact in fields such as meteorology and
oceanography, but their use in other scientific fields has been
hampered by the great practical difficulty of their derivation and
implementation. In his recent book [http://dx.doi.org/10.1137/1.9781611972078], Naumann (2011) states that

[T]he automatic generation of optimal (in terms of robustness and
efficiency) adjoint versions of large-scale simulation code is one
of the great open challenges in the field of High-Performance
Scientific Computing.

The dolfin-adjoint project aims to solve this problem for the case
where the model is implemented in the Python interface to DOLFIN.

News

11.6.2015: P. E. Farrell, S. W. Funke, D. A. Ham and M. E. Rognes were awarded the 2015 Wilkinson prize for numerical software [http://www.nag.co.uk/other/WilkinsonPrize.html] for dolfin-adjoint.

Features

dolfin-adjoint has the following features:

		Works for both steady and time-dependent problems and for both linear and nonlinear problems.

		Using it is very easy: given a differentiable forward model, employing dolfin-adjoint involves
changing on the order of ten lines of code.

		The adjoint and tangent linear models exhibit optimal theoretical efficiency. If every forward
variable is stored, the adjoint takes 0.2-1.0x the runtime of the forward model, depending on the
precise details of the structure of the forward problem.

		If the forward model runs in parallel, the adjoint and tangent linear models also run in parallel
with no modification.

		If instructed, the adjoint model can automatically employ optimal checkpointing schemes to
mitigate storage requirements for long nonlinear runs.

		Rigorous verification routines are provided, so that users can easily verify for themselves
the correctness of the derived models.

		Solves optimisation problems constrained by partial differential equations by interfacing to powerful optimisation algorithms

For more details, see the features page.

Limitations

To do all this, dolfin-adjoint requires some cooperation from the
model developer:

		Works only with the Python interface of DOLFIN.

		For the adjoint to be consistent, the discretisation must be differentiable.

		All changes to object values (matrices, vectors, functions) must happen through the DOLFIN interface.

How it works

The traditional approach to deriving adjoint and tangent linear models
is called algorithmic differentiation [http://www.autodiff.org] (also called automatic
differentiation). The fundamental idea of algorithmic differentiation
is to treat the model as a sequence of elementary instructions. An
elementary instruction is a simple operation such as addition,
multiplication, or exponentiation. Each one of these operations is
differentiated individually, and the derivative of the whole model is
then composed with the chain rule.

The dolfin-adjoint project is instead based on a very different
approach. The model is considered as a sequence of equation
solves. This abstraction is similar to the fundamental abstraction of
algorithmic differentiation, but operates at a much higher level of
abstraction. This idea is implemented in a software library,
libadjoint [http://bitbucket.org/dolfin-adjoint/libadjoint]. When this new idea is combined with the high-level
abstraction of the FEniCS system, many of the difficult problems
associated with algorithmic differentiation dissolve.

For more technical details on libadjoint and dolfin-adjoint, see
the papers.

Contributors

The dolfin-adjoint project is developed and maintained by the
following authors:

		Patrick E. Farrell [http://pefarrell.org] (Mathematical Institute, University of Oxford)

		Simon W. Funke [http://simonfunke.com] (Center for Biomedical Computing, Simula Research Laboratory / Applied Modelling and Computation Group, Imperial College London)

		David A. Ham [http://www.ic.ac.uk/people/david.ham] (Department of Mathematics and Department of Computing, Imperial College London)

		Marie E. Rognes [http://home.simula.no/~meg/] (Center for Biomedical Computing, Simula Research Laboratory)

		James R. Maddison [http://www.maths.ed.ac.uk/people/show?person-364] (School of Mathematics, University of Edinburgh)

License

Like the core FEniCS components [http://fenicsproject.org/about/], The dolfin-adjoint software is
freely available under the GNU LGPL [http://www.gnu.org/licenses/lgpl.html], version 3.

 © Copyright 2015, The dolfin-adjoint team.

_images/math/e6ea421f46343f7416931ebb0996524a2cd646e8.png

_images/math/c99df7a209495334da442b1ec998abaabfa320d8.png

_static/slider/klein.png

_images/math/0001d02b63ede2fe3219e05a7cd09c82ae6298b6.png

_images/math/1a52481ac36eb889dcbbdcc0783ba2a755ba3547.png

_images/math/35103b79c8334d7d70c36f7dcdc2003dad678c9a.png

_images/math/38f39fe7579d655483e0e99ac07d15e1a51d4fb2.png
AL

_images/math/caed487560f0d447fccb69ef2d258b4befbe3808.png

_images/math/6d42c88506b8da39a2a23653aecbfb7c29728063.png

_images/math/706468a6c285270a803d53eff00bb9bf00f3a67a.png

_images/math/9e05058dae5033d1c7c0dd265f0d99d056aba42f.png
OF(u,m)/0Om

_images/math/7dd2a5ea01fbd72ad2a58dd1f3d6ecbfde6208a1.png

_images/math/630e3a780577ea7921e81ee2ac5237dd1802ec8d.png

_images/math/34618c0f8ad5c48630b6e0d5b9c05be0f4930908.png
(Vy, Voo + ~(x(y),v)a = (f+u0)a Vo

_images/math/1dd2da87b911fe604ad6f7974e33dc16fd8cfe31.png
g = U.01

_images/math/f35449b93a8c9d94ffcc04413e1b47cca0392da4.png
10~

_static/file.png

_static/comment-bright.png

_images/math/3e82257c186070f8a56323904e9df4e9d01d9c5e.png
o

_images/math/2de38926392ba23abeac75effc66c37a5f5be5fd.png

_static/down-pressed.png

_images/math/dad49834394de84e450099b7353e27226e98a830.png
dM /dug

_images/math/2e8ee62221ca015d007bab8d94e59d3f64104b8d.png

_static/up-pressed.png

_images/math/d0af547b97acf153827c347cb2707f0678426789.png

_images/math/c3c08496f07567285212e468b173bea9ca153fab.png
L)

_static/adjoint.html

General information

Number of timesteps: 11

Number of registered equations: 24

Adjoint system

		
f_19:0:0:Adjoint[]

		
f_17:0:0:Adjoint[]

		
f_19:0:1:Adjoint[]

		
f_17:0:1:Adjoint[]

		
f_19:1:0:Adjoint[]

		
f_17:1:0:Adjoint[]

		
f_19:2:0:Adjoint[]

		
f_17:2:0:Adjoint[]

		
f_19:3:0:Adjoint[]

		
f_17:3:0:Adjoint[]

		
f_19:4:0:Adjoint[]

		
f_17:4:0:Adjoint[]

		
f_19:5:0:Adjoint[]

		
f_17:5:0:Adjoint[]

		
f_19:6:0:Adjoint[]

		
f_17:6:0:Adjoint[]

		
f_19:7:0:Adjoint[]

		
f_17:7:0:Adjoint[]

		
f_19:8:0:Adjoint[]

		
f_17:8:0:Adjoint[]

		
f_19:9:0:Adjoint[]

		
f_17:9:0:Adjoint[]

		
f_19:10:0:Adjoint[]

		
f_17:10:0:Adjoint[]

		Ident

		Ident

		756a4

		Ident

		a6d9a

		Ident

		2c242

		Ident

		52409

		Ident

		00347

		Ident

		9cbb0

		Ident

		4200e

		Ident

		846ab

		Ident

		59f24

		Ident

		12025

		Ident

		cce62

		Ident

Auxiliary variables

Callback information

Data callbacks

vec_duplicate
vec_axpy
vec_destroy
vec_set_values
vec_get_size
vec_divide
vec_get_norm
vec_dot_product
vec_set_random
mat_duplicate
mat_duplicate
mat_axpy
mat_destroy
Block action callbacks

Identity: <Function space of dimension 7442 (<Lagrange vector element of degree 2 on a <Domain built from <triangle cell in 2D> with label dolfin_mesh_with_id_0>: 2 x <CG2 on a <Domain built from <triangle cell in 2D> with label dolfin_mesh_with_id_0>>>)>

756a44dd7e919e00b8eb29af7a828b6c

a6d9a704c2cc84d2d4dc96bbae2c3e11

2c242e19c07f689ee880b75c156b57e6

52409fa7be86f2bc5324510f8a50ee6f

003475a122d5a5d3f2c169a6f89ceb7d

9cbb0fa314749c64a6a2c6ba7a3e906b

4200e87f4c15c48b1ff4f827a7a77e9b

846aba4489af38c1c82f678b7742f98b

59f243bfbbed940f07565b30f3f1cd34

12025de5f2bad245891312117ee3cb35

cce62a22f466a3367ffa381ac034db80

Block assembly callbacks

Identity: <Function space of dimension 7442 (<Lagrange vector element of degree 2 on a <Domain built from <triangle cell in 2D> with label dolfin_mesh_with_id_0>: 2 x <CG2 on a <Domain built from <triangle cell in 2D> with label dolfin_mesh_with_id_0>>>)>

756a44dd7e919e00b8eb29af7a828b6c

a6d9a704c2cc84d2d4dc96bbae2c3e11

2c242e19c07f689ee880b75c156b57e6

52409fa7be86f2bc5324510f8a50ee6f

003475a122d5a5d3f2c169a6f89ceb7d

9cbb0fa314749c64a6a2c6ba7a3e906b

4200e87f4c15c48b1ff4f827a7a77e9b

846aba4489af38c1c82f678b7742f98b

59f243bfbbed940f07565b30f3f1cd34

12025de5f2bad245891312117ee3cb35

cce62a22f466a3367ffa381ac034db80

Nonlinear block action callbacks

Nonlinear block derivative action callbacks

Nonlinear block second derivative action callbacks

Nonlinear derivative block assembly callbacks

Functional callbacks

Functional derivative callbacks

_images/math/fd1a5c3959b24d54834dd17f79c32d57dc6de0ad.png
our ~ Louyg,

_images/math/e5fc41b391867da81606413e3389c7efc73abaf0.png

_static/down.png

_images/math/db0592f1e47879a7c5c251e4403d73bd37ec55cf.png

_images/math/fbc37a0b7f7bb25c6222914721442013dba5b6c9.png
dJ _ J(m+he) — J(m

e h

_static/slider/poisson-topology.png

_images/math/77e2690ea9165600d86ad92d90c167a853dd5ab6.png

_images/math/d84b76a399b69263740518f1db90c94b649dea6b.png

_static/ajax-loader.gif

_images/math/d5a12650f454028beb82c26efcb525af50db3e0f.png
ue v

_images/math/73251db3e49b28b7ad4a34a80b3e84fbeb05aa6f.png

_static/up.png

_images/math/7f2c98bf462cba6083cf18483ba9510e3c2fd3d3.png
vy >)

_images/math/2c9f33d90ffdc5c072b747fa4c67ff310098c803.png
Flu,m)

_static/comment-close.png

_images/math/ced63f218fb00c8fdf6ddc5b378dfb87c77d33bd.png
oy = Fluy)

_images/math/909477b2a9cb158f8600c3956dbe787179735fd0.png

_images/math/11a85f3c69ae6702cb1d99d3de451913b8f84c04.png

_images/math/11a8581de6970b33e6855b181e4a61b21a6798d2.png

_static/plus.png

_images/math/b5e7749559b229b8adc297a67e8ef85390e0827a.png
H!

_images/math/250d4cdf6b050aa32d0343c7cde02da1ee747b94.png

_images/math/372c2a0702e1e5866656215408b37a2ddb8d2d45.png

_images/math/9742e6e377b629e67aa255584a6d654fe39db422.png

documentation/index.html

 Navigation

 		
 index

 		
 modules |

 		 »

Documentation for dolfin-adjoint 1.5

Quickstart

Have you just discovered dolfin-adjoint and want to get up and running
quickly? Then, we suggest you

		Start by going through the first steps of the dolfin-adjoint tutorial.

		Move on to look at the more detailed topology optimization example.

		Install dolfin-adjoint and its dependencies.

Next, feel free to take a look at the complete introduction to
dolfin-adjoint, more dolfin-adjoint
examples, an introduction to the
mathematical background of adjoints, or the dolfin-adjoint
API reference.

Resources

 dolfin-adjoint manual

The dolfin-adjoint manual describes
how to use dolfin-adjoint and the main features of dolfin-adjoint, and
includes introductory examples. For more use cases, see the
examples.

There is also a pdf version
of the documentation available.

The mathematical background

Are you not that familiar with adjoints? Adjoints show up in many
applications, and in many computational techniques. You might be
interested in a mathematical introduction to adjoints and
their applications.

Examples of dolfin-adjoint usage

We have implemented and documented a number of examples using dolfin-adjoint.

Many more examples of dolfin-adjoint usage can be found in the
separate dolfin-adjoint applications repository [http://bitbucket.org/dolfin-adjoint/da-applications] on Bitbucket.

dolfin-adjoint API reference

Are you looking for the complete reference documentation? Look no
further, it is right here: dolfin-adjoint API reference.

The timestepping library

How dolfin-adjoint integrates with the timestepping library is
documented here.

Frequently asked questions:

Some questions are asked more often than others: take a look at our
Frequently asked questions before
seeking support.

 © Copyright 2015, The dolfin-adjoint team.

documentation/faq.html

 Navigation

 		
 index

 		
 modules |

 		 »

Frequently asked questions

		Q: I have a time-dependent control in my PDE-constrained
optimization problem: how do I define this?

A: Take a look the time-dependent wave example for how to
specify time-dependent controls and functionals.

 © Copyright 2015, The dolfin-adjoint team.

documentation/checkpointing.html

 Navigation

 		
 index

 		
 modules |

 		 »

Checkpointing

As discussed in the mathematical background,
the adjoint model is a linearisation of the forward model. If the
forward model is nonlinear, then the solution of that forward model
must be available to linearise the forward model. By default,
dolfin-adjoint stores every variable computed in memory, as this is
the fastest and most straightforward option; however, this may not be
feasible for large runs, or for runs with very many timesteps.

The solution to this problem is to employ a checkpointing
scheme. Rather than store every variable during the forward run,
checkpoints are stored at strategically chosen intervals, from which
the model may recompute the missing solutions. During the adjoint run,
if a forward variable is necessary and unavailable, the forward model
is restarted from the nearest available checkpoint to compute the
missing solutions; once these are available, the adjoint run
continues.

Thus, to employ a checkpointing scheme, the control flow of the
adjoint run must seamlessly jump between assembling and solving the
adjoint equations, and assembling and solving parts of the forward
run. Coding a checkpointing scheme is quite complicated, and so most
hand-coded adjoint models do not use them. However, the
libadjoint library underlying dolfin-adjoint
embeds the excellent revolve library [http://www2.math.uni-paderborn.de/index.php?id=12067&L=1] of Griewank and Walther [http://dx.doi.org/10.1145/347837.347846],
and can automatically employ optimal checkpointing schemes for almost
no marginal user effort.

Activating checkpointing is very straightforward: two calls to
dolfin-adjoint functions are necessary. Firstly, before any equations
are solved, the user must call the adj_checkpointing function, which activates and
configures the checkpointing scheme. Secondly, the user must place a
call to adj_inc_timestep
at the end of the time loop, which indicates to libadjoint that a
timestep has ended. (Internally, the checkpointing scheme relies on
the concept of timesteps, but dolfin-adjoint has no way of
automatically determining when a timestep has ended, and so the user
must help out.) For example, to activate checkpointing for the
Burgers’ equation:

from dolfin import *
from dolfin_adjoint import *

adj_checkpointing(strategy='multistage', steps=11,
 snaps_on_disk=2, snaps_in_ram=2, verbose=True)

n = 30
mesh = UnitSquareMesh(n, n)
V = VectorFunctionSpace(mesh, "CG", 2)

ic = project(Expression(("sin(2*pi*x[0])", "cos(2*pi*x[1])")), V)

def main(nu):
 u = Function(ic)
 u_next = Function(V)
 v = TestFunction(V)

 timestep = Constant(0.01)

 F = (inner((u_next - u)/timestep, v)
 + inner(grad(u_next)*u_next, v)
 + nu*inner(grad(u_next), grad(v)))*dx

 bc = DirichletBC(V, (0.0, 0.0), "on_boundary")

 t = 0.0
 end = 0.1
 while (t <= end):
 solve(F == 0, u_next, bc)
 u.assign(u_next)
 t += float(timestep)
 adj_inc_timestep()

 return u

if __name__ == "__main__":
 nu = Constant(0.0001)
 u = main(nu)

 J = Functional(inner(u, u)*dx*dt[FINISH_TIME])
 dJdnu = compute_gradient(J, Control(nu))

 Jnu = assemble(inner(u, u)*dx)

 parameters["adjoint"]["stop_annotating"] = True
 def Jhat(nu):
 u = main(nu)
 return assemble(inner(u, u)*dx)

 conv_rate = taylor_test(Jhat, Control(nu), Jnu, dJdnu)

[image: more info] Download the checkpointed adjoint code.

The adjoint is still correct:

$ python tutorial5.py
...
Convergence orders for Taylor remainder with adjoint information (should all be 2):
 [1.9581779061731224, 1.9787032981594719, 1.9892527501829258, 1.994601330422228]

To see what the checkpointing scheme does, pass verbose=True:

$ python tutorial5.py | grep Revolve
Revolve: Checkpoint statistics:
Revolve: Checkpoint timestep 0 on disk.
Revolve: Advance from timestep 0 to timestep 3.
Revolve: Checkpoint timestep 3 on disk.
Revolve: Advance from timestep 3 to timestep 5.
Revolve: Checkpoint timestep 5 in memory.
Revolve: Advance from timestep 5 to timestep 7.
Revolve: Solve last timestep 7.
====== Revolve: Replay from equation 13 (first equation of timestep 7)
 to equation 14 (last equation of timestep 7). ======
Revolve: Replaying equation 13.
Revolve: Checkpoint equation 13 in memory.
Revolve: Replaying equation 14.
Revolve: Solving adjoint equation 14.
Revolve: Solving adjoint equation 13.
Revolve: Delete checkpoint equation 13.
...
====== Revolve: Replay from equation 2 (first equation of timestep 1)
 to equation 2 (last equation of timestep 1). ======
Revolve: No need to replay equation 2.
Revolve: Checkpoint equation 2 in memory.
Revolve: Solving adjoint equation 2.
Revolve: Delete checkpoint equation 2.
====== Revolve: Replay from equation 0 (first equation of timestep 0)
 to equation 1 (last equation of timestep 0). ======
Revolve: Replaying equation 0.
Revolve: No need to replay equation 1.
Revolve: Solving adjoint equation 1.
Revolve: Solving adjoint equation 0.
Revolve: Delete checkpoint equation 0.

There are two categories of checkpointing algorithms: offline
algorithms and online algorithms. In the offline case, the number
of timesteps is known in advance, and so the optimal distribution of
checkpoints may be computed a priori (and hence “offline”), while in
the online case, the number of timesteps is not known in advance, and
so the distribution of checkpoints must be computed during the run
itself. Both the offline and online algorithms in revolve only use
disk checkpoints; however, revolve also offers a multistage
algorithm, which is a variant of the offline algorithm that uses both
checkpoints in memory and checkpoints on disk.

At present, only the offline and multistage algorithms are
implemented, and so the number of timesteps must be known in
advance. Contributions to interfacing with the online algorithm are
very welcome.

To use checkpointing, the user must specify how many checkpoint slots
are available in memory and on disk. When libadjoint informs
dolfin-adjoint to checkpoint, dolfin-adjoint records the values of
all variables at that time. Therefore, each checkpoint slot is
equivalent to the whole state of memory. In the above example, both
u and u_next will be checkpointed, and so each
checkpoint will store 2*V.dim() floating point
numbers. Keep this in mind when estimating how many checkpoints your
machine can fit.

If you wish to perform large or long computations, you may be
interested in running the adjoint in parallel.

 © Copyright 2015, The dolfin-adjoint team.

documentation/api.html

 Navigation

 		
 index

 		
 modules |

 		 »

dolfin-adjoint API reference

The entire dolfin-adjoint interface should be imported with a single
call:

from dolfin import *
from dolfin_adjoint import *

It is essential that the importing of the dolfin_adjoint module happen after
importing the dolfin module. dolfin-adjoint relies on overloading many of
the key functions of dolfin to achieve its degree of automation.

Overloaded functions

		
dolfin_adjoint.assemble(*args, **kwargs)

		When a form is assembled, the information about its nonlinear dependencies is lost,
and it is no longer easy to manipulate. Therefore, dolfin_adjoint overloads the dolfin.assemble
function to attach the form to the assembled object. This lets the automatic annotation work,
even when the user calls the lower-level solve(A, x, b).

		
dolfin_adjoint.assemble_system(*args, **kwargs)

		When a form is assembled, the information about its nonlinear dependencies is lost,
and it is no longer easy to manipulate. Therefore, dolfin_adjoint overloads the dolfin.assemble_system
function to attach the form to the assembled object. This lets the automatic annotation work,
even when the user calls the lower-level solve(A, x, b).

		
dolfin_adjoint.solve(*args, **kwargs)

		This solve routine wraps the real Dolfin solve call. Its purpose is to annotate the model,
recording what solves occur and what forms are involved, so that the adjoint and tangent linear models may be
constructed automatically by libadjoint.

To disable the annotation, just pass annotate=False to this routine, and it acts exactly like the
Dolfin solve call. This is useful in cases where the solve is known to be irrelevant or diagnostic
for the purposes of the adjoint computation (such as projecting fields to other function spaces
for the purposes of visualisation).

		
dolfin_adjoint.project(v, V=None, bcs=None, mesh=None, solver_type='cg', preconditioner_type='default', form_compiler_parameters=None, annotate=None, name=None)

		The project call performs an equation solve, and so it too must be annotated so that the
adjoint and tangent linear models may be constructed automatically by libadjoint.

To disable the annotation of this function, just pass annotate=False. This is useful in
cases where the solve is known to be irrelevant or diagnostic for the purposes of the adjoint
computation (such as projecting fields to other function spaces for the purposes of
visualisation).

		
dolfin_adjoint.interpolate(v, V, annotate=None, name=None)

		The interpolate call changes Function data, and so it too must be annotated so that the
adjoint and tangent linear models may be constructed automatically by libadjoint.

To disable the annotation of this function, just pass annotate=False. This is useful in
cases where the interpolation is known to be irrelevant or diagnostic for the purposes of the adjoint
computation (such as interpolating fields to other function spaces for the purposes of
visualisation).

Overloaded objects

		
class dolfin_adjoint.LUSolver(*args)

		This object is overloaded so that solves using this class are automatically annotated,
so that libadjoint can automatically derive the adjoint and tangent linear models.

		
solve(*args, **kwargs)

		To disable the annotation, just pass annotate=False to this routine, and it acts exactly like the
Dolfin solve call. This is useful in cases where the solve is known to be irrelevant or diagnostic
for the purposes of the adjoint computation (such as projecting fields to other function spaces
for the purposes of visualisation).

		
class dolfin_adjoint.NewtonSolver(*args, **kwargs)

		This object is overloaded so that solves using this class are automatically annotated,
so that libadjoint can automatically derive the adjoint and tangent linear models.

		
solve(*args, **kwargs)

		To disable the annotation, just pass annotate=False to this routine, and it acts exactly like the
Dolfin solve call. This is useful in cases where the solve is known to be irrelevant or diagnostic
for the purposes of the adjoint computation (such as projecting fields to other function spaces
for the purposes of visualisation).

		
class dolfin_adjoint.KrylovSolver(*args)

		This object is overloaded so that solves using this class are automatically annotated,
so that libadjoint can automatically derive the adjoint and tangent linear models.

		
solve(*args, **kwargs)

		To disable the annotation, just pass annotate=False to this routine, and it acts exactly like the
Dolfin solve call. This is useful in cases where the solve is known to be irrelevant or diagnostic
for the purposes of the adjoint computation (such as projecting fields to other function spaces
for the purposes of visualisation).

		
class dolfin_adjoint.NonlinearVariationalSolver(problem, *args, **kwargs)

		This object is overloaded so that solves using this class are automatically annotated,
so that libadjoint can automatically derive the adjoint and tangent linear models.

		
solve(annotate=None)

		To disable the annotation, just pass annotate=False to this routine, and it acts exactly like the
Dolfin solve call. This is useful in cases where the solve is known to be irrelevant or diagnostic
for the purposes of the adjoint computation (such as projecting fields to other function spaces
for the purposes of visualisation).

		
class dolfin_adjoint.NonlinearVariationalProblem(F, u, bcs=None, J=None, *args, **kwargs)

		This object is overloaded so that solves using this class are automatically annotated,
so that libadjoint can automatically derive the adjoint and tangent linear models.

		
class dolfin_adjoint.LinearVariationalSolver(problem, *args, **kwargs)

		This object is overloaded so that solves using this class are automatically annotated,
so that libadjoint can automatically derive the adjoint and tangent linear models.

		
solve(annotate=None)

		To disable the annotation, just pass annotate=False to this routine, and it acts exactly like the
Dolfin solve call. This is useful in cases where the solve is known to be irrelevant or diagnostic
for the purposes of the adjoint computation (such as projecting fields to other function spaces
for the purposes of visualisation).

		
class dolfin_adjoint.LinearVariationalProblem(a, L, u, bcs=None, *args, **kwargs)

		This object is overloaded so that solves using this class are automatically annotated,
so that libadjoint can automatically derive the adjoint and tangent linear models.

		
class dolfin_adjoint.Function(*args, **kwargs)

		The Function class is overloaded so that you can give Functions names. For example,

u = Function(V, name="Velocity")

This allows you to refer to the Function by name throughout dolfin-adjoint, rather than
needing to have the specific Function instance available.

For more details, see the dolfin-adjoint documentation.

		
assign(other, annotate=None, *args, **kwargs)

		To disable the annotation, just pass annotate=False to this routine, and it acts exactly like the
Dolfin assign call.

		
class dolfin_adjoint.Constant(value, cell=None, name=None)

		The Constant class is overloaded so that you can give Constants names. For example,

nu = Constant(1.0e-4, name="Diffusivity")

This allows you to refer to the Constant by name throughout dolfin-adjoint, rather than
needing to have the specific Constant instance available.

For more details, see the dolfin-adjoint documentation.

Driver functions

		
dolfin_adjoint.compute_gradient(J, param, forget=True, ignore=[], callback=<function <lambda>>, project=False)

		

		
dolfin_adjoint.compute_adjoint(functional, forget=True, ignore=[])

		

		
dolfin_adjoint.compute_tlm(parameter, forget=False)

		

Functional object

		
class dolfin_adjoint.Functional(timeform, verbose=False, name=None)

		This class implements the libadjoint.Functional abstract base class for dolfin-adjoint.
The core idea is that a functional is either

		an integral of a form over a certain time window, or

		a pointwise evaluation in time of a certain form, or

		a sum of terms like (a) and (b).

Some examples:

		Integration over all time:

J = Functional(inner(u, u)*dx*dt)

		Integration over a certain time window:

J = Functional(inner(u, u)*dx*dt[0:1])

		Integration from a certain point until the end:

J = Functional(inner(u, u)*dx*dt[0.5:])

		Pointwise evaluation in time (does not need to line up with timesteps):

J = Functional(inner(u, u)*dx*dt[0.5])

		Pointwise evaluation at the start (e.g. for regularisation terms):

J = Functional(inner(u, u)*dx*dt[START_TIME])

		Pointwise evaluation at the end:

J = Functional(inner(u, u)*dx*dt[FINISH_TIME])

		And sums of these work too:

J = Functional(inner(u, u)*dx*dt + inner(u, u)*dx*dt[FINISH_TIME])

If dt has been redefined, you can create your own time measure with TimeMeasure.

For anything but the evaluation at the final time to work, you need to annotate the
timestepping of your model with adj_inc_timestep.

ReducedFunctional object

		
class dolfin_adjoint.ReducedFunctional(functional, controls, scale=1.0, eval_cb_pre=<function <lambda>>, eval_cb_post=<function <lambda>>, derivative_cb_pre=<function <lambda>>, derivative_cb_post=<function <lambda>>, replay_cb=<function <lambda>>, hessian_cb=<function <lambda>>, cache=None)

		This class provides access to the reduced functional for given
functional and controls. The reduced functional maps a point in control
space to the associated functional value by implicitly solving the PDE that
is annotated by dolfin-adjoint. The ReducedFunctional object can also
compute functional derivatives with respect to the controls using the
adjoint method.

		
__call__(value)

		Evaluates the reduced functional for the given control value.

		
class dolfin_adjoint.ReducedFunctionalNumPy(rf)

		This class implements the reduced functional for given functional and
controls based on numpy data structures.

This “NumPy version” of the dolfin_adjoint.ReducedFunctional is created from
an existing ReducedFunctional object:
rf_np = ReducedFunctionalNumPy(rf = rf)

		
__call__(m_array)

		An implementation of the reduced functional evaluation
that accepts the control values as an array of scalars

		
pyopt_problem(constraints=None, bounds=None, name='Problem', ignore_model_errors=False)

		Return a pyopt problem class that can be used with the PyOpt package,
http://www.pyopt.org/

Control objects

		
dolfin_adjoint.Control(obj, *args, **kwargs)

		Creates a dolfin-adjoint control.

		
class dolfin_adjoint.FunctionControl(coeff, value=None, perturbation=None)

		This Parameter is used as input to the tangent linear model (TLM)
when one wishes to compute dJ/d(initial condition) in a particular direction (perturbation).

		
class dolfin_adjoint.ConstantControl(a, coeff=1)

		This Parameter is used as input to the tangent linear model (TLM)
when one wishes to compute dJ/da, where a is a single scalar parameter.

Constraint objects

		
class dolfin_adjoint.EqualityConstraint

		This class represents equality constraints of the form

c_i(m) == 0

for 0 <= i < n, where m is the parameter.

		
function(m)

		Evaluate c(m), where c(m) == 0 for equality constraints and c(m) >= 0 for inequality constraints.

c(m) must return a numpy array or a dolfin Function or Constant.

		
jacobian(m)

		Returns the full Jacobian matrix as a list of vector-like objects representing the gradient of the constraint function with respect to the parameter m.

The objects returned must be of the same type as m’s data.

		
class dolfin_adjoint.InequalityConstraint

		This class represents constraints of the form

c_i(m) >= 0

for 0 <= i < n, where m is the parameter.

		
function(m)

		Evaluate c(m), where c(m) == 0 for equality constraints and c(m) >= 0 for inequality constraints.

c(m) must return a numpy array or a dolfin Function or Constant.

		
jacobian(m)

		Returns the full Jacobian matrix as a list of vector-like objects representing the gradient of the constraint function with respect to the parameter m.

The objects returned must be of the same type as m’s data.

Annotation functions

		
dolfin_adjoint.adj_checkpointing(strategy, steps, snaps_on_disk, snaps_in_ram, verbose=False, replay=False, replay_comparison_tolerance=1e-10)

		

		
dolfin_adjoint.adj_start_timestep(time=0.0)

		Dolfin does not supply us with information about timesteps, and so more information
is required from the user for certain features. This function should be called at the
start of the time loop with the initial time (defaults to 0).

See also: dolfin_adjoint.adj_inc_timestep

		
dolfin_adjoint.adj_inc_timestep(time=None, finished=False)

		Dolfin does not supply us with information about timesteps, and so more information
is required from the user for certain features. This function should be called at
the end of the time loop with two arguments:

		time – the time at the end of the timestep just computed

		finished – whether this is the final timestep.

With this information, complex functional expressions using the Functional class
can be used.

The finished argument is necessary because the final step of a functional integration must perform
additional calculations.

See also: dolfin_adjoint.adj_start_timestep

Debugging functions

		
dolfin_adjoint.adj_html(*args, **kwargs)

		This routine dumps the current state of the adjglobals.adjointer to a HTML visualisation.
Use it like:

		adj_html(“forward.html”, “forward”) # for the equations recorded on the forward run

		adj_html(“adjoint.html”, “adjoint”) # for the equations to be assembled on the adjoint run

		
dolfin_adjoint.adj_check_checkpoints()

		

		
dolfin_adjoint.taylor_test(J, m, Jm, dJdm, HJm=None, seed=None, perturbation_direction=None, value=None)

		J must be a function that takes in a parameter value m and returns the value
of the functional:

func = J(m)

Jm is the value of the function J at the parameter m.
dJdm is the gradient of J evaluated at m, to be tested for correctness.

This function returns the order of convergence of the Taylor
series remainder, which should be 2 if the adjoint is working
correctly.

If HJm is not None, the Taylor test will also attempt to verify the
correctness of the Hessian. HJm should be a callable which takes in a
direction and returns the Hessian of the functional in that direction
(i.e., takes in a vector and returns a vector). In that case, an additional
Taylor remainder is computed, which should converge at order 3 if the Hessian
is correct.

		
dolfin_adjoint.replay_dolfin(forget=False, tol=0.0, stop=False)

		

Generalised stability theory

		
dolfin_adjoint.compute_gst(ic, final, nsv, ic_norm='mass', final_norm='mass', which=1)

		This function computes the generalised stability analysis of a simulation.
Generalised stability theory computes the perturbations to a field (such as an
initial condition, forcing term, etc.) that /grow the most/ over the finite
time window of the simulation. For more details, see the mathematical documentation
on the website [http://dolfin-adjoint.org].

		ic – the input of the propagator

		final – the output of the propagator

		nsv – the number of optimal perturbations to compute

		ic_norm – a symmetric positive-definite bilinear form that defines the norm on the input space

		final_norm – a symmetric positive-definite bilinear form that defines the norm on the output space

		which – which singular vectors to compute. Use e.g. slepc4py.SLEPc.EPS.Which.LARGEST_REAL

You can supply "mass" for ic_norm and final_norm to use the (default) mass matrices associated
with these spaces.

For example:

gst = compute_gst("State", "State", nsv=10)
for i in range(gst.ncv): # number of converged vectors
 (sigma, u, v) = gst.get_gst(i, return_vectors=True)

Accessing tape

		
class dolfin_adjoint.DolfinAdjointVariable(coefficient, timestep=None, iteration=None)

		A wrapper class for Dolfin objects to store additional information such as
a time step, a iteration counter and the type of the variable (adjoint, forward or tangent linear).

		
__init__(coefficient, timestep=None, iteration=None)

		Create a DolfinAdjointVariable associated with the provided coefficient.

If the coefficient is not known to dolfin_adjoint (i.e. if no equation for it was
annotated), an Exception is thrown.

By default, the DolfinAdjointVariable references the latest timestep and iteration number,
but may be overwritten with the timestep and the iteration parameters. Negative values may
be used to reference the backwards.

		
tape_value(timestep=None, iteration=None)

		Return the tape value associated with the variable (optionally for the given timestep and iteration).

		
iteration_count()

		Return the annotated number of iterations at the variables timestep.

		
known_timesteps()

		Return a list of timesteps for which this variable is annotated on the tape.

		
dolfin_adjoint.adj_reset()

		Forget all annotation, and reset the entire dolfin-adjoint state.

 © Copyright 2015, The dolfin-adjoint team.

documentation/gst.html

 Navigation

 		
 index

 		
 modules |

 		 »

Generalised stability analysis

Generalised stability analysis is a powerful tool for investigating
the stability of physical systems. For an introduction to the
mathematics, see the chapter in the mathematical background.

Computing the GST

Once the record of the simulation has been created, it is possible to
perform generalised stability analysis with one line of code:

gst = compute_gst(initial, final, nsv)

The initial and final variables define the input
and output of the propagator [image: L] respectively, while
nsv is the number of singular vectors requested. By
default, the mass matrices of the input and output spaces are used to
define the norms on the input and output spaces. Optionally, the user
can specify other matrices to change the norms used for either of
these spaces. For example, to replicate the default behaviour, one
could write

gst = compute_gst(initial, final, nsv, ic_norm=inner(u, v)*dx)

where u and v are instances of the
TrialFunction and TestFunction classes on the
appropriate input function space.

This one call will derive the tangent linear and adjoint systems,
construct a matrix-free representation of the propagator, and use this
inside a Krylov-Schur iteration to solve the GST singular value
problem. This computation may take many iterations of the tangent
linear and adjoint systems. The solution of the singular value problem
is achieved with the SLEPc [http://www.grycap.upv.es/slepc/]
library.

Using the GST

Once the GST has been computed, it may be used as follows:

for i in range(gst.ncv):
 (sigma, u, v, residual) = gst.get_gst(i, return_vectors=True, return_residual=True)

The ncv member of the gst contains the number of
converged singular vectors. This may be less than, equal to, or
greater than the requested number of singular vectors.

By default, get_gst only returns the growth rate
[image: \sigma] associated with the computed singular triplet. To fetch
the singular vectors, pass return_vectors=True. To compute
the residual of the eigenvalue computation, pass
return_residual=True.

Example

A complete example of a generalised stability analysis of the tutorial
example is presented below.

from dolfin import *
from dolfin_adjoint import *

n = 30
mesh = UnitSquareMesh(n, n)
V = VectorFunctionSpace(mesh, "CG", 2)

ic = project(Expression(("sin(2*pi*x[0])", "cos(2*pi*x[1])")), V)
nu = Constant(0.0001, name="nu")

def main(ic):
 u = Function(ic, name="Velocity")
 u_next = Function(V, name="VelocityNext")
 v = TestFunction(V)

 timestep = Constant(0.01)

 F = (inner((u_next - u)/timestep, v)
 + inner(grad(u_next)*u_next, v)
 + nu*inner(grad(u_next), grad(v)))*dx

 bc = DirichletBC(V, (0.0, 0.0), "on_boundary")

 t = 0.0
 end = 0.1
 while (t <= end):
 solve(F == 0, u_next, bc)
 u.assign(u_next)
 t += float(timestep)

 return u

if __name__ == "__main__":
 u = main(ic)

 gst = compute_gst("Velocity", "Velocity", nsv=3)
 for i in range(gst.ncv):
 sigma = gst.get_gst(i)
 print "Growth rate of vector %s: %s" % (i, sigma)

[image: more info] Download the gst code.

This prints the following output:

$ python tutorial11.py
...
Growth rate of vector 0: 4.09880352035
Growth rate of vector 1: 3.20037673764
Growth rate of vector 2: 3.07821571572
Growth rate of vector 3: 3.06242628866

 © Copyright 2015, The dolfin-adjoint team.

documentation/misc.html

 Navigation

 		
 index

 		
 modules |

 		 »

Miscellaneous notes

Naming Functions and Constants

Consider the example presented in the tutorial again:

from dolfin import *
from dolfin_adjoint import *

n = 30
mesh = UnitSquareMesh(n, n)
V = VectorFunctionSpace(mesh, "CG", 2)

ic = project(Expression(("sin(2*pi*x[0])", "cos(2*pi*x[1])")), V)
u = Function(ic)
u_next = Function(V)
v = TestFunction(V)

nu = Constant(0.0001)

timestep = Constant(0.01)

F = (inner((u_next - u)/timestep, v)
 + inner(grad(u_next)*u_next, v)
 + nu*inner(grad(u_next), grad(v)))*dx

bc = DirichletBC(V, (0.0, 0.0), "on_boundary")

t = 0.0
end = 0.1
while (t <= end):
 solve(F == 0, u_next, bc)
 u.assign(u_next)
 t += float(timestep)

J = Functional(inner(u, u)*dx*dt[FINISH_TIME])
dJdic = compute_gradient(J, Control(u), forget=False)
dJdnu = compute_gradient(J, Control(nu))

Note that the Constant nu passed to Control(nu) had to be exactly the same variable
as was used in the forward form. This could be quite inconvenient, if the form creation occurs in one file, and the
adjoint is driven from another. To facilitate such cases, it is possible to give the Constant a name:

nu = Constant(0.0001, name="nu")

which may then be used to drive the adjoint. However, the Control class does not have
enough information to determine what kind of control it is: therefore in this case the ConstantControl
class must be used:

dJdnu = compute_gradient(J, ConstantControl("nu"))

A full example is given in the following code.

from dolfin import *
from dolfin_adjoint import *

n = 30
mesh = UnitSquareMesh(n, n)
V = VectorFunctionSpace(mesh, "CG", 2)

ic = project(Expression(("sin(2*pi*x[0])", "cos(2*pi*x[1])")), V)

def main(nu):
 u = Function(ic)
 u_next = Function(V)
 v = TestFunction(V)

 timestep = Constant(0.01)

 F = (inner((u_next - u)/timestep, v)
 + inner(grad(u_next)*u_next, v)
 + nu*inner(grad(u_next), grad(v)))*dx

 bc = DirichletBC(V, (0.0, 0.0), "on_boundary")

 t = 0.0
 end = 0.1
 while (t <= end):
 solve(F == 0, u_next, bc)
 u.assign(u_next)
 t += float(timestep)

 return u

if __name__ == "__main__":
 nu = Constant(0.0001, name="nu")
 u = main(nu)

 J = Functional(inner(u, u)*dx*dt[FINISH_TIME])
 dJdnu = compute_gradient(J, ConstantControl("nu"))

 Jnu = assemble(inner(u, u)*dx) # current value

 parameters["adjoint"]["stop_annotating"] = True # stop registering equations

 def Jhat(nu): # the functional as a pure function of nu
 u = main(nu)
 return assemble(inner(u, u)*dx)

 conv_rate = taylor_test(Jhat, ConstantControl("nu"), Jnu, dJdnu)

Similarly, it is possible to give Functions names:

u = Function(ic, name="Velocity")
u_next = Function(ic, name="VelocityNext")

which can then be used in other places with FunctionControl:

dJdic = compute_gradient(J, FunctionControl("Velocity"))

A full example is given in the following code.

from dolfin import *
from dolfin_adjoint import *

n = 30
mesh = UnitSquareMesh(n, n)
V = VectorFunctionSpace(mesh, "CG", 2)

ic = project(Expression(("sin(2*pi*x[0])", "cos(2*pi*x[1])")), V)
nu = Constant(0.0001, name="nu")

def main(ic):
 u = Function(ic, name="Velocity")
 u_next = Function(V, name="VelocityNext")
 v = TestFunction(V)

 timestep = Constant(0.01)

 F = (inner((u_next - u)/timestep, v)
 + inner(grad(u_next)*u_next, v)
 + nu*inner(grad(u_next), grad(v)))*dx

 bc = DirichletBC(V, (0.0, 0.0), "on_boundary")

 t = 0.0
 end = 0.1
 while (t <= end):
 solve(F == 0, u_next, bc)
 u.assign(u_next)
 t += float(timestep)

 return u

if __name__ == "__main__":
 u = main(ic)

 J = Functional(inner(u, u)*dx*dt[FINISH_TIME])
 dJdic = compute_gradient(J, FunctionControl("Velocity"))

 Jic = assemble(inner(u, u)*dx) # current value

 parameters["adjoint"]["stop_annotating"] = True # stop registering equations

 def Jhat(ic):
 u = main(ic)
 return assemble(inner(u, u)*dx)

 conv_rate = taylor_test(Jhat, FunctionControl("Velocity"), Jic, dJdic, value=ic)

Lower-level interfaces

A lower-level interface is available to loop over the adjoint solutions (backwards in time) for some manual calculation.
This uses the compute_adjoint function:

J = Functional(inner(u, u)*dx*dt[FINISH_TIME])
for (variable, solution) in compute_adjoint(J):
 ...

Here, solution is a dolfin.Function storing a particular adjoint solution,,
and variable is a libadjoint.Variable that describes
which forward solution it corresponds to.

Similarly, it is possible to loop over the tangent linear solutions with the compute_tlm function:

param = Control(nu)
for (variable, solution) in compute_tlm(param):
 ...

 © Copyright 2015, The dolfin-adjoint team.

documentation/parallel.html

 Navigation

 		
 index

 		
 modules |

 		 »

Parallel

Applying algorithmic differentiation tools to parallel source code is still
a major research area, and most adjoint codes that work in parallel manually adjoin the parallel
communication sections of their code.

One of the major advantages of the new high-level abstraction used in dolfin-adjoint is that
the problem of parallelism in adjoint codes simply disappears: indeed, there is not a single
line of parallel-specific code in dolfin-adjoint or libadjoint. For more details on how this
works, see the papers.

Therefore, if your forward model runs in parallel, your adjoint will also, with no modification.
For example, let us take the checkpointed adjoint model used in the previous section:

$ mpiexec -n 8 python tutorial5.py
...
Process 0: Convergence orders for Taylor remainder with adjoint information (should all be 2):
 [1.9744066553464978, 1.9872606129796675, 1.9936586367818951, 1.9968385300177882]

Similarly, parallelism over OpenMP works in the same way:

from dolfin import *
from dolfin_adjoint import *

parameters["num_threads"] = 8

adj_checkpointing(strategy='multistage', steps=11,
 snaps_on_disk=2, snaps_in_ram=2, verbose=True)

n = 30
mesh = UnitSquareMesh(n, n)
V = VectorFunctionSpace(mesh, "CG", 2)

ic = project(Expression(("sin(2*pi*x[0])", "cos(2*pi*x[1])")), V)

def main(nu):
 u = Function(ic)
 u_next = Function(V)
 v = TestFunction(V)

 timestep = Constant(0.01)

 F = (inner((u_next - u)/timestep, v)
 + inner(grad(u_next)*u_next, v)
 + nu*inner(grad(u_next), grad(v)))*dx

 bc = DirichletBC(V, (0.0, 0.0), "on_boundary")

 t = 0.0
 end = 0.1
 while (t <= end):
 solve(F == 0, u_next, bc)
 u.assign(u_next)
 t += float(timestep)
 adj_inc_timestep()

 return u

if __name__ == "__main__":
 nu = Constant(0.0001)
 u = main(nu)

 J = Functional(inner(u, u)*dx*dt[FINISH_TIME])
 dJdnu = compute_gradient(J, Control(nu))

 Jnu = assemble(inner(u, u)*dx)

 parameters["adjoint"]["stop_annotating"] = True
 def Jhat(nu):
 u = main(nu)
 return assemble(inner(u, u)*dx)

 conv_rate = taylor_test(Jhat, Control(nu), Jnu, dJdnu)

[image: more info] Download the checkpointed threaded parallel code.

$ python tutorial6.py
...
Convergence orders for Taylor remainder with adjoint information (should all be 2):
 [1.9581779061701046, 1.9787032981536112, 1.989252750128478, 1.994601330484473]

 © Copyright 2015, The dolfin-adjoint team.

documentation/timestepping.html

 Navigation

 		
 index

 		
 modules |

 		 »

A library for writing transient models

In this section, the experimental timestepping library is described.
The timestepping library offers an alternative way of writing forward models
that enables extra optimisations in the adjoint run. dolfin-adjoint handles
time-dependent models without the use of this library.

Transient models typically consist of a known repeating model “timestep”. This
leads to a repeating model structure, and this structure may be exploited to
increase model performance. In particular, if the structure of the transient
model is known, it is possible for static data to be pre-computed and cached
before timestepping the model itself.

The dolfin-adjoint source code includes an additional experimental library,
known as the timestepping library, which enables such optimisations to be
performed. This library may be used on its own or in combination with the
dolfin-adjoint library. The library source code can be found in the
timestepping/ directory of the dolfin-adjoint source tree, and more complete
documentation can be found in the timestepping/manual/ directory.

The timestepping Python module

The timestepping library can be accessed via:

from dolfin import *
from timestepping import *

This provides additional functionality enabling a transient model to be
described. For example, the following yields a very simple model for the
diffusion equation:

from dolfin import *
from timestepping import *

Define a simple structured mesh on the unit interval
mesh = UnitIntervalMesh(10)
P1 function space
space = FunctionSpace(mesh, "CG", 1)

Model parameters and boundary conditions
dt = StaticConstant(0.05)
bc1 = StaticDirichletBC(space, 1.0,
 "on_boundary && near(x[0], 0.0)")
bc2 = StaticDirichletBC(space, 0.0,
 "on_boundary && near(x[0], 1.0)")
bcs = [bc1, bc2]
nu = StaticConstant(0.01)

Define time levels
levels = TimeLevels(levels = [n, n + 1], cycle_map = {n:n + 1})
A time dependent function
u = TimeFunction(levels, space, name = "u")

Initialise a TimeSystem
system = TimeSystem()

Add an initial assignment
u_ic = StaticFunction(space, name = "u_ic")
u_ic.assign(Constant(0.0))
bc1.apply(u_ic.vector())
system.add_solve(u_ic, u[0])
Register a simple diffusion equation, discretised in time
using forward Euler
test = TestFunction(space)
system.add_solve(
 inner(test, (1.0 / dt) * (u[n + 1] - u[n])) * dx ==
 -nu * inner(grad(test), grad(u[n])) * dx,
 u[n + 1], bcs,
 solver_parameters = {"linear_solver":"lu"})

Assemble the TimeSystem
system = system.assemble()

Timestep the model
t = 0.0
while t * (1.0 + 1.0e-9) < 1.0:
 system.timestep()
 t += float(dt)
Finalise
system.finalise()

The timestepping library can derive discrete adjoint models and perform
derivative calculations. Time discretisation specific optimisations are
applied to the adjoint model. The following modification to the above example
performs such a calculation, and verifies the computed derivative via a
Taylor remainder test:

Assemble the TimeSystem, enabling the adjoint. Set the
functional to be equal to spatial integral of the final u.
system = system.assemble(adjoint = True, functional = u[N] * dx)

Timestep the model
t = 0.0
while t * (1.0 + 1.0e-9) < 1.0:
 system.timestep()
 t += float(dt)
Finalise
system.finalise()

Perform a total derivative calculation
dJ = system.compute_gradient(nu)

Verify the stored forward model data
system.verify_checkpoints()
Verify the computed derivative using a Taylor remainder
convergence test
orders = system.taylor_test(nu, grad = dJ)
Check the convergence order
assert((orders > 1.99).all())

The dolfin_adjoint_timestepping Python module

The functionality of the timestepping and dolfin-adjoint libraries can be
combined via:

from dolfin import *
from dolfin_adjoint_timestepping import *

The following example constructs a very simple model for the diffusion equation
using the timestepping library. dolfin-adjoint is then used to derive a
discrete adjoint model, perform a total derivative calculation, and verify the
computed derivative:

from dolfin import *
from dolfin_adjoint_timestepping import *

Stage 1: Configure and execute the forward model using
functionality provided by the timestepping library

Define a simple structured mesh on the unit interval
mesh = UnitIntervalMesh(10)
P1 function space
space = FunctionSpace(mesh, "CG", 1)

Model parameters and boundary conditions
dt = StaticConstant(0.05)
bc1 = StaticDirichletBC(space, 1.0,
 "on_boundary && near(x[0], 0.0)")
bc2 = StaticDirichletBC(space, 0.0,
 "on_boundary && near(x[0], 1.0)")
bcs = [bc1, bc2]
nu = StaticConstant(0.01)

Define time levels
levels = TimeLevels(levels = [n, n + 1], cycle_map = {n:n + 1})
A time dependent function
u = TimeFunction(levels, space, name = "u")

Initialise a TimeSystem
system = TimeSystem()

Add an initial assignment
u_ic = StaticFunction(space, name = "u_ic")
u_ic.assign(Constant(0.0))
bc1.apply(u_ic.vector())
system.add_solve(u_ic, u[0])
Register a simple diffusion equation, discretised in time
using forward Euler
test = TestFunction(space)
system.add_solve(
 inner(test, (1.0 / dt) * (u[n + 1] - u[n])) * dx ==
 -nu * inner(grad(test), grad(u[n])) * dx,
 u[n + 1], bcs,
 solver_parameters = {"linear_solver":"lu"})

Assemble the TimeSystem
system = system.assemble(initialise = False)

Run the forward model. The model execution is wrapped by a
function to enable adjoint verification using the
dolfin-adjoint taylor_test function.
def run_forward():
 system.initialise()
 t = 0.0
 while t * (1.0 + 1.0e-9) < 1.0:
 system.timestep()
 t += float(dt)
 system.finalise()
 return
run_forward()

Stage 2: Access features provided by the dolfin-adjoint library

Disable annotation of model equations by dolfin-adjoint
parameters["adjoint"]["stop_annotating"] = True

Define a functional equal to spatial integral of the final u
J = u[N] * dx
Perform a total derivative calculation
J_da = Functional(J * dolfin_adjoint.dt[FINISH_TIME])
nu_da = Control(nu)
dJ = compute_gradient(J_da, nu_da)

Verify the computed derivative using a Taylor remainder
convergence test
def J_p(nu_p):
 nu.assign(nu_p)
 system.reassemble(nu)
 run_forward()
 return assemble(J)
order = taylor_test(J_p, nu_da, assemble(J), dJ, seed = 1.0e-6)
Check the convergence order
assert(order > 1.99)

The native timestepping Python module can often yield faster adjoint models than
the dolfin_adjoint_timestepping module, but is much less feature complete.

 © Copyright 2015, The dolfin-adjoint team.

_images/math/413f8a8e40062a9090d9d50b88bc7b551b314c26.png

documentation/optimisation.html

 Navigation

 		
 index

 		
 modules |

 		 »

PDE-constrained optimisation

PDE-constrained optimisation problems are problems of the form:

[image: \min_{u,m} J(u, m)

\mathrm{subject~to}

F(u, m) = 0

l_u \le m \le l_b

g(m) \le 0]

where [image: m] contains the optimisation variables, [image: J] is a
real valued objective functional, [image: F(u, m) = 0] is the PDE with
solution [image: u]. The bounds and inequality constraints can be used
to restrict the feasible optimisation variables.

For an introduction to the mathematics, see the chapter in the
mathematical background.

The reduced functional

While it is possible to solve the optimisation problem above directly,
we often prefer to form the so-called reduced problem. Given that
for every [image: m] the PDE yields a unique solution [image: u], we can
define a solution operator [image: u(m)]. Substituting this operator
into the optimisation problem yields the reduced problem:

[image: \min_{m} J(u(m), m)

\mathrm{subject~to}

l_u \le m \le l_b

g(m) \le 0]

The advantage of solving this formulation is that the PDE-constraint
is exactly satisfied at each optimisation iteration. In particular,
the optimisation loop can be terminated as soon as the functional is
sufficiently reduced by the optimisation algorithm, without any
feasibility iterations.

The functional in the reduced form can be seen as a function that only
depends on the optimisation variable m, that is:

[image: \tilde J(m) := J(u(m), m)]

The definition of this reduced functional [image: \tilde J] is the
first step of solving an optimisation problem with dolfin-adjoint. It
is created with:

reduced_functional = ReducedFunctional(J, m)

where J is a Functional and m is a
Control (e.g. a
ConstantControl or FunctionControl).

Important: ReducedFunctional works by replaying the
simulation record of dolfin-adjoint. Therefore, make sure that you
execute the forward model once before using it.

Solving the optimisation problem

Once the reduced functional is defined, we are only one step away from
solving the optimisation problem:

m_opt = minimize(reduced_functional)

or if a maximization problem is to be solved:

m_opt = maximize(reduced_functional)

By default, the optimisation problem is solved using limited memory
BFGS method with bound support.

Features

Important: Please make sure that you have scipy >= 0.11 installed.
Older scipy versions are only partly supported and require different
arguments. You can check your scipy version with

import scipy
print scipy.__version__

Choosing the optimisation algorithm

The optimisation module currently supports following optimisation
algorithms:

		CG: The nonlinear conjugate gradient algorithm.

		BFGS: The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method.

		L-BFGS-B: A limited memory BFGS implementation with bound support.

		SLSQP: The sequential least squares quadratic programming algorithm.

		TNC: The truncated Newton algorithm with bound support.

		Nelder-Mead: The Simplex algorithm (gradient-free).

		Newton-CG: The truncated Newton algorithm.

		Anneal: The simulated annealing method (gradient-free).

		COBYLA: Constrained optimization by linear approximation.

		Powell: The Powell’s method (gradient-free).

More details about the algorithms can be found on the scipy.optimize [http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize]
web page.

This list can be generated by calling:

print_optimization_methods()

By default, the framework uses the L-BFGS-B method. A different
algorithm can be selected by adding the method argument to
minimize or maximize and providing one of the names from the list
above, e.g.:

m_opt = minimize(reduced_functional, method = 'SLSQP')

Callbacks

Often one wants to add a callback function that is executed after
every optimisation iteration, for example to save or plot the
functional or parameter values. The optimisation framework provides
two ways how this can be achieved.

Option 1

One can attach callbacks functions to ReducedFunctional
object which are executed whenever the functional is evaluated. There
are separate callbacks for functional evaluation and functional
gradient evaluation.

The following code example prints the functional value, functional
gradient and the associated scalar parameter:

def eval_cb(j, m):
 print "j = %f, m = %f." % (j, float(m))

def derivative_cb(j, dj, m):
 print "j = %f, dj = %f, m = %f." % (j, dj, float(m))

reduced_functional = ReducedFunctional(J, ConstantControl("Nu"),
 eval_cb = eval_cb,
 derivative_cb = derivative_cb)

In most gradient-based optimisation methods, the gradient is evaluated
at the beginning of a new optimisation iteration. Hence, if one wants
to plot the progress of the optimisation, the derivative callback is
the natural choice.

Option 2

Alternatively, one can attach a callback function to the minimize (or
maximize) routine (see below). However, this callback takes only the
parameter value as an argument and therefore this method is not
suitable if one wants to plot the functional values during the
optimisation.

def iter_cb(m):
 print "m = ", m

m_opt = minimize(reduced_functional, method = 'SLSQP', callback = iter_cb)

Advanced optimisation options

Each optimisation algorithm supports different features and hence has
different configuration options. To be able to access these options,
any arguments that are unknown to minimize or maximize will be
passed to the optimisation algorithm.

The most relevant options that can be used with all supported
optimisation methods are:

		tol: Tolerance for termination. For detailed control, use solver-specific options.

		options: A dictionary of solver options. All methods accept the following generic options:
		maxiter: Maximum number of iterations to perform.

		disp: Set to True to print convergence messages.

		gtol: The iteration loops stops if the gradient norm drops below this tolerance.

[image: more info] For method-specific options, see scipy’s function
show_options(‘minimize’, method).

For example:

m_opt = minimize(reduced_functional, method = 'SLSQP', tol = 1e-10, options = {'disp': True})

Multiple parameters

The optimisation module can handle multiple optimisation parameters.
Simply pass a list of parameters to ReducedFunctional:

reduced_functional = ReducedFunctional(J, [m1, m2, ...])
m_opt = minimize(reduced_functional)

Bounds

If the optimisation algorithm supports bounds of the form [image: b_u <
m < b_u] this functionality can be used by adding the bounds
argument to minimize or maximize.

reduced_functional = ReducedFunctional(J, m)
m_opt = minimize(reduced_functional, bounds = (m_lb, m_ub))

where m_lb and m_ub are objects of the same type than the
parameter that contain the lower and the upper bound values.

If the bounds are constants, a set of floats can be passed
alternatively, e.g.:

reduced_functional = ReducedFunctional(J, m)
m_opt = minimize(reduced_functional, bounds = (0.0, 1.0))

In the case where multiple parameters are optimised, the bound
parameter must consist of a list whose elements contains the bounds
for each parameter, i.e.

reduced_functional = ReducedFunctional(J, [m1, m2, ...])
m_opt = minimize(reduced_functional, bounds = [(m1_lb, m1_ub), (m2_lb, m2_ub), ...])

where each of the m1_lb, m1_ub, m2_lb, ... are objects of the
same type as the parameter.

Debugging

Sometimes, the optimisation algorithm does not converge or terminates
with an error that indicates that the gradient might be incorrect. In
theses cases, it is a good idea to make sure that the gradient
evaluation is indeed correct. This is achieved by running the
Taylor test for every gradient evaluation that
occurs during the optimisation. This functionality is activated with:

dolfin.parameters["optimization"]["test_gradient"] = True
dolfin.parameters["optimization"]["test_gradient_seed"] = 0.0001

By default, the gradient test is deactivated. If no gradient_seed is
specified the value 0.0001 is used.

Example

The following example shows the code for solving the optimal control
of the heat equation:

""" Solves the optimal control problem for the heat equation """
from dolfin import *
from dolfin_adjoint import *

Setup
n = 200
mesh = RectangleMesh(-1, -1, 1, 1, n, n)
V = FunctionSpace(mesh, "CG", 1)
u = Function(V, name="State")
m = Function(V, name="Control")
v = TestFunction(V)

Run the forward model once to create the simulation record
F = (inner(grad(u), grad(v)) - m*v)*dx
bc = DirichletBC(V, 0.0, "on_boundary")
solve(F == 0, u, bc)

The functional of interest is the normed difference between desired
and simulated temperature profile
x = triangle.x
u_desired = exp(-1/(1-x[0]*x[0])-1/(1-x[1]*x[1]))
J = Functional((0.5*inner(u-u_desired, u-u_desired))*dx*dt[FINISH_TIME])

Run the optimisation
reduced_functional = ReducedFunctional(J, Control(m, value=m))
Make sure you have scipy >= 0.11 installed
m_opt = minimize(reduced_functional, method = "L-BFGS-B",
 tol=2e-08, bounds = (-1, 1), options = {"disp": True})

[image: more info] Download the optimisation code.

This prints the following output that contains various information,
such as the final functional value:

$ python optimal_control.py
...
N Tit Tnf Tnint Skip Nact Projg F
40401 6 8 6 0 0 8.153D-09 1.809D-05
F = 1.80922786897687845E-005

CONVERGENCE: NORM OF PROJECTED GRADIENT <= PGTOL

 © Copyright 2015, The dolfin-adjoint team.

_images/math/b39932b8cbb311eeee9815738f6be3757737b2ff.png

documentation/manual.html

 Navigation

 		
 index

 		
 modules |

 		 »

How to use dolfin-adjoint

Section author: Patrick E. Farrell <patrick.farrell@maths.ox.ac.uk>,
Simon W. Funke <simon@simula.no>

		First steps
		Foreword

		A first example

		Verification
		Taylor remainder convergence test

		Applying this in dolfin-adjoint

		Checkpointing

		Parallel

		Debugging
		Visualising the forward and adjoint systems

		Replaying the forward run

		Testing the derivatives of operators

		Expressing functionals
		Examples

		Limitations

		PDE-constrained optimisation
		The reduced functional

		Solving the optimisation problem

		Features
		Choosing the optimisation algorithm

		Callbacks
		Option 1

		Option 2

		Advanced optimisation options

		Multiple parameters

		Bounds

		Debugging

		Example

		Generalised stability analysis
		Computing the GST

		Using the GST

		Example

		Miscellaneous notes
		Naming Functions and Constants

		Lower-level interfaces

 © Copyright 2015, The dolfin-adjoint team.

_images/math/607da88ef10319af30c047282bc1e7e5cdf83390.png

_images/math/29281d7873e0c15ebfbb21c64ffd00abc1601712.png

_images/math/efacf4a424ace8d5e776e3818a62160f3ef1e686.png

_images/math/c69691d64985442217922c8d34e835a9dea60178.png

_images/math/60cdc3625048fdbb63eb5418f935852648304e66.png
—0F(u,m)/0m

_images/math/b226cacb848bb9f4b714887f41a7b73a9c2c752b.png

_images/math/23f1b45408e5b4130c0f940fcbfcec54492cbdcd.png

_images/math/dbfbecb0fc1b220a9c1b45ed287adfd209cf8809.png
T

_images/math/32f7733e436d462d67b5ef5b393d0bd0620dffd1.png
Nl

/n(p)u u+p/K;Vu Vuf/x;fu
A

documentation/salt-fingering/salt-fingering.html

 Navigation

 		
 index

 		
 modules |

 		 »

Generalised stability analysis of double-diffusive salt fingering

Section author: Patrick E. Farrell <patrick.farrell@maths.ox.ac.uk>

This demo solves example 4.2 of [6E-FCF14].

Background

In the ocean, the diffusivity coefficient of temperature is approximately two
orders of magnitude larger than the diffusivity coefficient of salinity.
Suppose warm salty water lies above colder, less salty water. If a parcel of
warm salty water sinks downwards into the colder region, the heat of the
parcel will diffuse away much faster than its salt, thus making the parcel
denser, and causing it to sink further. Similarly, if a parcel of cold, less
salty water rises into the warmer region, it will gain heat from its
surroundings much faster than it will gain salinity, making the parcel more
buoyant. This phenomenon is referred to as ‘’salt fingering’’
[6E-Ste60] and has been observed in many real-world oceanographic
contexts [6E-Tur85].

Ozgokmen and Esenkov [6E-OE98] used a numerical model to
investigate asymmetry in the growth of salt fingers caused by nonlinearities
in the equation of state. In this work, we investigate the stability of the
proposed configuration to small perturbations. Generalised stability theory
is an extension of asymptotic linear stability theory to finite time horizons,
and requires computing the singular value decomposition of the model
propagator, whose action requires the solution of the tangent linear and
adjoint models.

Problem definition

The equations describing the system are the two-dimensional
vorticity-streamfunction formulation of the time-dependent Navier–Stokes
equations, coupled to two advection equations for temperature and salinity:

[image: \frac{\partial \zeta}{\partial t} + \nabla^{\perp} \psi \cdot \nabla \zeta &= \frac{\textrm{Ra}}{\textrm{Pr}}\left(\frac{\partial T}{\partial x} - \frac{1}{R_{\rho}^0} \frac{\partial S}{\partial x}\right) + \nabla^2 \zeta, \\
\frac{\partial T}{\partial t} + \nabla^{\perp} \psi \cdot \nabla T &= \frac{1}{\textrm{Pr}} \nabla^2 T, \\
\frac{\partial S}{\partial t} + \nabla^{\perp} \psi \cdot \nabla S &= \frac{1}{\textrm{Sc}} \nabla^2 S, \\
\nabla^2 \psi &= \zeta,]

where [image: \zeta] is the vorticity, [image: \psi] is the streamfunction,
[image: T] is the temperature, [image: S] is the salinity, and [image: \textrm{Ra}],
[image: \textrm{Sc}], [image: \textrm{Pr}] and [image: {R_{\rho}^0}] are nondimensional parameters.
Periodic boundary conditions are applied on the left and right boundaries.
The configuration consists of two well-mixed layers (i.e., of homogeneous
temperature and salinity) separated by an interface. To activate the
instability, [6E-OE98] add a sinusoidal perturbation to the initial
salinity field.

Implementation

We start our implementation by importing the dolfin and
dolfin_adjoint modules

from dolfin import *
from dolfin_adjoint import *

Next we create a 50 x 50 regular mesh of the rectangle [image: [0, 1] \times
[0, 2]]. This mesh is quite coarse so that the demo runs in approximately ten
minutes; for production computations, this might be run at 300 x 300 or 500 x
500.

mesh = RectangleMesh(0, 0, 1, 2, 50, 50)

Computing the singular value decomposition of the propagator requires many
actions of the propagator, the operator that maps perturbations in the input
to perturbations in the output at some finite time later. (The propagator is
typically dense, and so the SVD is computed matrix-free.) Each action requires
the solution of the tangent linear and adjoint systems. Since the same
equations are solved over and over for each action, dolfin-adjoint can
optionally cache the LU factorizations to greatly speed up subsequent
propagator actions.

parameters["adjoint"]["cache_factorizations"] = True

Here we enforce the periodic boundary conditions that map the right-hand
boundary to the left-hand boundary. The inside function indicates
which boundary is to be mapped to (here the left); the map
function maps from the right-hand boundary to the left-hand boundary.

class PeriodicBoundary(SubDomain):
 def inside(self, x, on_boundary):
 return x[0] == 0.0 and on_boundary

 def map(self, x, y):
 y[0] = x[0] - 1
 y[1] = x[1]

pbc = PeriodicBoundary()

Now we declare our function spaces. Since the vorticity-streamfunction
formulation no longer has a divergence constraint, we can use piecewise linear
Galerkin finite elements for every prognostic field, without concern for
inf-sup stability conditions.

V = FunctionSpace(mesh, "CG", 1, constrained_domain=pbc)
P = FunctionSpace(mesh, "CG", 1, constrained_domain=pbc)
T = FunctionSpace(mesh, "CG", 1, constrained_domain=pbc)
S = FunctionSpace(mesh, "CG", 1, constrained_domain=pbc)

Z = MixedFunctionSpace([V, P, T, S])

We impose that the streamfunction is zero on the top and bottom.

streamfunction_bc_top = DirichletBC(Z.sub(1), 0.0, "on_boundary && near(x[1], 2.0)")
streamfunction_bc_bot = DirichletBC(Z.sub(1), 0.0, "on_boundary && near(x[1], 0.0)")
bcs = [streamfunction_bc_top, streamfunction_bc_bot]

Set parameters for the timestepping (implicit midpoint) and
values of the nondimensional parameters.

dt = Constant(0.001)
endT = 0.05
theta = 0.5

Ra = Constant(1*10**6)
Pr = Constant(7)
Sc = Constant(700)
Rrho = Constant(1.8)

Now we configure the initial conditions of [6E-OE98].
Since we want to investigate the stability of perturbations to
salinity, we will configure the model so that it propagates a
scalar field called “InitialSalinity” to a scalar field called
“FinalSalinity”. Therefore the steps involved in setting up the
initial condition are:

		Project the initial salinity field to the salinity function space

		Project that field and the initial conditions for vorticity and
temperature into the mixed function space, while simultaneously
solving for the streamfunction.

def get_ic():

 class InitialSalinity(Expression):
 def eval(self, values, x):
 # salinity initial condition: salty on top, fresh on the bottom, and a wavy
 # interface in between
 if x[1] > 1.1 + 0.016*cos(10*pi*x[0]):
 values[0] = 1.0
 elif x[1] < 0.9 + 0.016*cos(10*pi*x[0]):
 values[0] = 0.0
 else:
 values[0] = 5*(x[1]-0.016*cos(10*pi*x[0])) - 4.5

 class InitialTemperature(Expression):
 def eval(self, values, x):
 # temperature initial condition: warm on top, cool on bottom
 if x[1] > 1.1:
 values[0] = 1.0
 elif x[1] < 0.9:
 values[0] = 0.0
 else:
 values[0] = 5*x[1] - 4.5

 salinity_ic = interpolate(InitialSalinity(), S, name="InitialSalinity")
 zeta = Constant(0) # initially at rest
 t = InitialTemperature()
 s = salinity_ic

 z_test = TestFunction(Z)
 (zeta_test, p_test, t_test, s_test) = split(z_test)

 z = Function(Z, name="State")
 (zeta_trial, p_trial, t_trial, s_trial) = split(z)

 # project zeta, t, s; solve for the streamfunction p

 a = (inner(zeta_test, zeta_trial)*dx +
 inner(t_test, t_trial)*dx +
 inner(s_test, s_trial)*dx +
 inner(grad(p_test), grad(p_trial))*dx)
 L = (inner(zeta_test, zeta)*dx +
 inner(t_test, t)*dx +
 inner(s_test, s)*dx -
 inner(p_test, zeta)*dx)
 F = a - L

 solve(F == 0, z, bcs, solver_parameters={"newton_solver": {"linear_solver": "lu"}})
 return z

[image: ../../_images/salinity-ic.png]
Finally, once we have the mixed function state (zeta, p, t, s) at the end of
the run, we need to project out the salinity. dolfin-adjoint considers whole
functions, not parts of mixed function spaces, and hence the final salinity
component must be projected to the salinity space to ensure that the model is
seen as a map from the initial salinity to the final salinity.

def project_salinity(z_final):
 s = project(split(z_final)[-1], S, name="FinalSalinity")
 return s

The main loop of the forward model. Compute the initial conditions, advance
the equations forward in time, and then compute the final salinity.

def main():

 # This function takes the theta-weighted average of the old
 # and new values at a timestep. This is used in the timestepping
 # later.

 def cn(old, new):
 return (1-theta)*old + theta*new

 # Define the :math:`\nabla^\perp` operator (the 2D equivalent of
 # the cross product) and advection flux operators.

 def grad_perp(field):
 x = grad(field)
 return as_vector([-x[1], x[0]])

 def J(test, stream, tracer):
 return -inner(grad(test), tracer*(grad_perp(stream)))*dx

 z_old = get_ic()
 (zeta_old, p_old, t_old, s_old) = split(z_old)

 store(z_old, time=0.0)

 z_test = TestFunction(Z)
 (zeta_test, p_test, t_test, s_test) = split(z_test)

 z = Function(Z, name="NextState")
 (zeta, p, t, s) = split(z)

 t_cn = cn(t_old, t)
 s_cn = cn(s_old, s)
 zeta_cn = cn(zeta_old, zeta)

 time = 0.0
 while time < endT:
 F = (inner((zeta - zeta_old)/dt, zeta_test)*dx
 + (1-theta)* J(zeta_test, p_old, zeta_old)
 + (theta) * J(zeta_test, p, zeta)
 - Ra*(1.0/Pr) * inner(zeta_test, grad(t_cn)[0] - (1.0/Rrho)*grad(s_cn)[0])*dx
 + inner(grad(zeta_test), grad(zeta_cn))*dx
 + inner((t - t_old)/dt, t_test)*dx
 + (1-theta)* J(t_test, p_old, t_old)
 + (theta) * J(t_test, p, t)
 + (1.0/Pr) * inner(grad(t_test), grad(t_cn))*dx
 + inner((s - s_old)/dt, s_test)*dx
 + (1-theta)* J(s_test, p_old, s_old)
 + (theta) * J(s_test, p, s)
 + (1.0/Sc) * inner(grad(s_test), grad(s_cn))*dx
 + inner(grad(p_test), grad(p))*dx
 + inner(p_test, zeta)*dx)

 solve(F == 0, z, bcs=bcs, J=derivative(F, z), solver_parameters=
 {"newton_solver": {"maximum_iterations": 20, "linear_solver": "mumps"}})

 z_old.assign(z)

 time += float(dt)
 store(z_old, time=time)

 s = project_salinity(z_old)

I/O functions for the forward and stability runs. First, define a function to
perform the I/O during the forward run. These PVD files store the forward
simulation results for visualisation in paraview.

zeta_pvd = File("results/velocity.pvd")
p_pvd = File("results/streamfunction.pvd")
t_pvd = File("results/temperature.pvd")
s_pvd = File("results/salinity.pvd")

def store(z, time):
 if MPI.rank(mpi_comm_world()) == 0:
 info_blue("Storing variables at t=%s" % time)

 (u, p, t, s) = z.split()

 u.rename("Velocity", "u")
 p.rename("Pressure", "p")
 t.rename("Temperature", "t")
 s.rename("Salinity", "s")
 zeta_pvd << (u, time)
 p_pvd << (p, time)
 t_pvd << (t, time)
 s_pvd << (s, time)

Next, the I/O function for the output of the generalised stability analysis
(gst stands for generalised stability theory).

s_in_pvd = File("results/gst_input_s.pvd")
s_out_pvd = File("results/gst_output_s.pvd")

def store_gst(z, io, i):
 if io == "input":
 z.rename("SalinityIn%d" % i, "gst_in_%d" % i)
 s_in_pvd << (z, float(i))
 f = File("results/gst_input_%s.xdmf" % i)
 f << z
 elif io == "output":
 z.rename("SalinityOut%d" % i, "gst_out_%d" % i)
 s_out_pvd << (z, float(i))
 f = File("results/gst_output_%s.xdmf" % i)
 f << z

if __name__ == "__main__":
First, run the forward model, building the graph:

 z = main()

Now take the singular value decomposition of the propagator that maps
perturbations to initial salinity forwards in time to perturbations in final
salinity. This requires that libadjoint was compiled with support for SLEPc:

gst = compute_gst("InitialSalinity", "FinalSalinity", nsv=2)

Now fetch the results of the SVD:

for i in range(gst.ncv):
 (sigma, u, v) = gst.get_gst(i, return_vectors=True)

 print "Singular value: ", sigma

 store_gst(v, "input", i)
 store_gst(u, "output", i)

The example code can be found in examples/salt-fingering in the dolfin-adjoint
source tree, and executed as follows:

$ mpiexec -n 4 python salt-fingering.py
...
1 EPS nconv=2 Values (Errors) 1.13047e+06GST calculation took 17 multiplications of L^*L.
GST calculation took 17 multiplications of L^*L.
Singular value: 1063.23627036
Singular value: 1062.77728405

The fact that the singular values are greater than 1 indicates that the system
is unstable to the perturbations identified.

This image shows the leading initial perturbation and the arising final perturbation.
The perturbation selectively promotes the growth of some fingers, and retards the
growth of others.

[image: ../../_images/salinity-combined.png]
References

		[6E-FCF14]		P. E. Farrell, C. J. Cotter, and S. W. Funke. A framework for the automation of generalised stability theory. SIAM Journal on Scientific Computing, 2014. doi:10.1137/120900745 [http://dx.doi.org/10.1137/120900745].

		[6E-Ste60]		M. E. Stern. The “salt-fountain” and thermohaline convection. Tellus, 12(2):172–175, 1960. doi:10.1111/j.2153-3490.1960.tb01295.x [http://dx.doi.org/10.1111/j.2153-3490.1960.tb01295.x].

		[6E-Tur85]		J. S. Turner. Multicomponent convection. Annual Review of Fluid Mechanics, 17(1):11–44, 1985. doi:10.1146/annurev.fl.17.010185.000303 [http://dx.doi.org/10.1146/annurev.fl.17.010185.000303].

		[6E-OE98]		(1, 2, 3) T. M. Özgökmen and O. E. Esenkov. Asymmetric salt fingers induced by a nonlinear equation of state. Physics of Fluids, 10(8):1882–1890, 1998. doi:10.1063/1.869705 [http://dx.doi.org/10.1063/1.869705].

 © Copyright 2015, The dolfin-adjoint team.

documentation/time-dependent-wave/time-dependent-wave.html

 Navigation

 		
 index

 		
 modules |

 		 »

Time-dependent optimal control of the linear scalar wave equation

Section author: Steven Vandekerckhove <Steven.Vandekerckhove@kuleuven.be>

Problem definition

The problem is to minimise the following tracking-type functional

[image: J(y, u) =
 \frac{1}{2} \int_{0}^T | u(L, t) - u_\text{obs}(L, t) |^2 \, \, \mathrm{d}t,]

subjected to the time-dependent scalar wave equation equation

[image: u_{tt} - c^2 u_{xx} &= 0 \qquad \mathrm{in} \, \Omega \times (0, T), \\
u(x, 0) &= 0, \\
u(0, t) &= s(t), \\
u(L, t) &= 0,]

where [image: c] is the wave speed and [image: \Omega = \left[0, L\right]] is a one dimensional domain, for a given source function [image: s(t) = \sin(\omega t)]:

In particular, we aim to

[image: \min J(u, \omega) \textrm{ over } (u, \omega).]

Discretization

Using a classic central difference for discretizing in time, with time step
[image: \Delta t], the time-discretized differential equation reads:
for a given [image: s^n], for each time step [image: n], find
[image: u^{n+1}] such that

[image: \frac{u^{n+1} - 2 u^n + u^{n-1}}{\Delta t} - c^2 u^n_{xx} &= 0, \\

u(0, t^n) = s(t^n) &= s^n.]

Let [image: U] be the space of continuous piecewise linear functions.
Multiplying by test functions [image: v \in U], integrating by parts over
[image: \Omega], the problem reads: find [image: u_h^{n} \in U] such that

[image: \langle \frac{u^{n+1} - 2 u^n + u^{n-1}}{\Delta t}, v \rangle
+ \langle c^2 u^n_x, v_x \rangle &= 0,]

hold for all [image: v \in U].

Implementation

We start our implementation by importing the dolfin and dolfin_adjoint modules,
together with the numpy and sys modules, for handeling storage and ui:

from dolfin import *
from dolfin_adjoint import *
import numpy as np
import os, sys

Next, we prepare the mesh,

mesh = UnitIntervalMesh(50)

and set a time step size:

k = Constant(1e-3)

Since we want to add boundary conditions only on the left hand side,
and make observations on the left hand side, we have to identify both sides
separately:

Compile sub domains for boundaries
left = CompiledSubDomain("near(x[0], 0.)")
right = CompiledSubDomain("near(x[0], 1.)")

Label boundaries, required for the objective
boundary_parts = MeshFunction("size_t", mesh, mesh.topology().dim()-1)
left.mark(boundary_parts, 0)
right.mark(boundary_parts, 1)
ds = Measure("ds")[boundary_parts]

Then, an expression is built for the time dependent source term.
We need to provide member functions for evaluating the function and its derivative.

class Source(Expression):
 def __init__(self, t, omega=Constant(2e2)):
 """ Construct the source function """
 self.t = t
 self.omega = omega

 def eval(self, value, x):
 """ Evaluate the expression """
 if x[0] < 1e-15:
 value[0] = np.sin(float(self.omega)*self.t)
 else:
 value[0] = 0.

 def deval(self, value, x, coeff):
 """ Evaluate the derivative of the expression """
 assert coeff == self.omega, "Given coeff must be the start time"
 if x[0] < 1e-15:
 value[0] = self.t*np.cos(float(self.omega)*self.t)
 else:
 value[0] = 0.

 def dependencies(self):
 """ List the dependencies of which derivatives are taken """
 return [self.omega]

 def copy(self):
 """ Return a copy of itself """
 return Source(self.t, self.omega)

Before the inverse problem can be solved, we have to implement the forward problem:

def forward(excitation, c=Constant(1.), record=False, annotate=False):
 # Define function space
 U = FunctionSpace(mesh, "Lagrange", 1)

 # Set up initial values
 u0 = interpolate(Expression("0"), U, name = "u0", annotate = annotate)
 u1 = interpolate(Expression("0"), U, name = "u1", annotate = annotate)

 # Define test and trial functions
 v = TestFunction(U)
 u = TrialFunction(U)

 # Define variational formulation
 udot = (u - 2.*u1 + u0)
 uold = (0.25*u + 0.5*u1 +0.25*u0)
 F = (udot*v+k*k*c*c*uold.dx(0)*v.dx(0))*dx - u*v*ds(0) + excitation*v*ds(0)
 a = lhs(F)
 L = rhs(F)

 # Prepare solution
 u = Function(U, name = "u", annotate = annotate)

 # The actual timestepping
 if record: rec = [u1(1.),]
 i = 1
 t = 0.0 # Initial time
 T = 3.e-1 # Final time
 times = [t,]
 if annotate: adj_start_timestep()
 while t < T - .5*float(k):
 print t
 excitation.t = t + float(k)
 solve(a == L, u, annotate = annotate)
 u0.assign(u1, annotate = annotate)
 u1.assign(u, annotate = annotate)

 t = i*float(k)
 times.append(t)
 if record:
 rec.append(u1(1.0))
 plot(u)
 if annotate: adj_inc_timestep(t, t > T - .5*float(k))
 i += 1

 if record:
 np.savetxt("recorded.txt", rec)

 return u1, times

Note that the forward solver has been implemented as straight forward as possible,
with litte attention for efficiency. E.g., a significant speed-up could be realized
by re-using the factorization of linear system.

Also a function is defined to assemble the objective

 combined = zip(times, observations)
 area = times[-1] - times[0]
 M = len(times)
 I = area/M*sum(inner(u - u_obs, u - u_obs)*ds(1)*dt[t]
 for (t, u_obs) in combined)
 return I

Now we can have a look at the optimization procedure

 # Define the control
 source = Source(t = 0.0, omega = Constant(190))

 # Execute first time to annotate and record the tape
 u, times = forward(source, 2*DOLFIN_PI, False, True)

 if dbg:
 # Check the recorded tape
 success = replay_dolfin(tol = 0.0, stop = True)
 print "replay: ", success

 # for the equations recorded on the forward run
 adj_html("forward.html", "forward")
 # for the equations to be assembled on the adjoint run
 adj_html("adjoint.html", "adjoint")

 # Load references
 refs = np.loadtxt("recorded.txt")

 # create noise to references
 gamma = 1.e-5
 if gamma > 0:
 noise = np.random.normal(0, gamma, refs.shape[0])

 # add noise to the refs
 refs += noise

 # map refs to be constant
 refs = map(Constant, refs)

 # Define the controls
 controls = [Control(c) for c in source.dependencies()]

 Jform = objective(times, u, refs)
 J = Functional(Jform)

 # compute the gradient
 dJd0 = compute_gradient(J, controls)
 print float(dJd0[0])

 # Prepare the reduced functional
 reduced_functional = ReducedFunctional(J, controls, eval_cb = eval_cb)

 # Run the optimisation
 omega_opt = minimize(reduced_functional, method = "L-BFGS-B",\
 tol=1.0e-12, options = {"disp": True,"gtol":1.0e-12})

 # Print the obtained optimal value for the controls
 print "omega = %f" %float(omega_opt)

The code can be run as follows:

""" Compute a reference solution (once) """
Source = source(t = 0.0, omega = Constant(2e2))
forward(Source, 2*DOLFIN_PI, True)

""" Start the optimization procedure """
optimize()

The complete code can be downloaded here.

Comments

Running the code results in an approximation for the optimal value for
[image: \omega = 199.999986], which is correct up to the noise level.

 © Copyright 2015, The dolfin-adjoint team.

documentation/stokes-bc-control/stokes-bc-control.html

 Navigation

 		
 index

 		
 modules |

 		 »

Dirichlet BC control of the Stokes equations

Section author: Simon W. Funke <simon@simula.no>, André Massing <massing@simula.no>

This example demonstrates how to optimise Dirichlet boundary
conditions with the optimisation framework in dolfin-adjoint using
the Nitsche method.

A detailed introduction to the Nitsche method and its applications
can be found in [2E-Nit71], [2E-Han05],
[2E-BH07].

Problem definition

Consider the problem of minimising the compliance

[image: \min_{g, u, p} \ \frac{1}{2}\int_{\Omega} \nabla u \cdot \nabla u~\textrm{d}x + \frac{\alpha}{2} \int_{\partial \Omega_{\textrm{in}}} g^2~\textrm{d}s]

subject to the Stokes equations

[image: -\nu \Delta u + \nabla p &= 0 \qquad \mathrm{in} \ \Omega \\
 \mathrm{div }\ u &= 0 \qquad \mathrm{in} \ \Omega \\]

and Dirichlet boundary conditions

[image: u &= g \qquad \mathrm{on} \ \partial \Omega_{\textrm{cirlce}} \\
u &= f \qquad \mathrm{on} \ \partial \Omega_{\textrm{in}} \\
u &= 0 \qquad \mathrm{on} \ \partial \Omega_{\textrm{walls}} \\
p &= 0 \qquad \mathrm{on} \ \partial \Omega_{\textrm{out}} \\]

where [image: \Omega] is the domain of interest (visualised below),
[image: u:\Omega \to \mathbb R^2] is the unknown velocity,
[image: p:\Omega \to \mathbb R] is the unknown pressure, [image: \nu]
is the viscosity, [image: \alpha] is the regularisation parameter,
[image: f] denotes the value for the Dirichlet inflow boundary
condition, and [image: g] is the control variable that specifies the
Dirichlet boundary condition on the circle.

[image: ../../_images/stokes_bc_control_domain.png]
Physically, this setup corresponds to minimising the loss of flow
energy into heat by actively controlling the in/outflow at the
circle boundary. To avoid excessive control solutions, non-zero
control values are penalised via the regularisation term.

Implementation

First, the dolfin and dolfin_adjoint modules are imported:

from dolfin import *
from dolfin_adjoint import *

Next, we load the mesh. The mesh was generated with mshr; see make-mesh.py
in the same directory.

mesh = Mesh("rectangle-less-circle.xdmf")

Then, we define the discrete function spaces. A Taylor-Hood
finite-element pair is a suitable choice for the Stokes equations.
The control function is the Dirichlet boundary value on the velocity
field and is hence be a function on the velocity space (note: FEniCS
cannot restrict functions to boundaries, hence the control is
defined over the entire domain).

V = VectorFunctionSpace(mesh, "CG", 2) # Velocity
Q = FunctionSpace(mesh, "CG", 1) # Pressure
W = MixedFunctionSpace([V, Q])
v, q = TestFunctions(W)
x = TrialFunction(W)
u, p = split(x)
s = Function(W, name="State")
g = Function(V, name="Control")

The Nitsche method requires the computation of boundary integrals
over [image: \partial \Omega_{\textrm{circle}}]. Therefore, we need
to create a measure for these integrals, which will be accessible as
ds(2) in the definition of the variational formulation.

class Circle(SubDomain):
 def inside(self, x, on_boundary):
 return on_boundary and (x[0]-10)**2 + (x[1]-5)**2 < 3**2

facet_marker = FacetFunction("size_t", mesh)
facet_marker.set_all(10)
Circle().mark(facet_marker, 2)

ds = Measure("ds")[facet_marker]

Now we define some parameters, including the Nitsche penalty
parameter [image: \gamma] (typically 10), the mesh element size
[image: h], the normal direction at the boundary [image: n], and the
strong Dirichlet boundary conditions apart from the circle boundary
where we will enforce the boundary condition via the Nitsche method.

Set parameter values
nu = Constant(1) # Viscosity coefficient
gamma = Constant(10) # Nitsche penalty parameter
n = FacetNormal(mesh)
h = CellSize(mesh)

Define boundary conditions
u_inflow = Expression(("x[1]*(10-x[1])/25", "0"))
noslip = DirichletBC(W.sub(0), (0, 0),
 "on_boundary && (x[1] >= 9.9 || x[1] < 0.1)")
inflow = DirichletBC(W.sub(0), u_inflow, "on_boundary && x[0] <= 0.1")
bcs = [inflow, noslip]

The Dirichlet condition at the circle is enforced by the Nitsche
approach. To begin with we derive the standard weak formulation of
the Stokes problem: Find [image: u, p] such that for all test
functions [image: v, q]

[image: a(u,p; v,q) = L(u,p;v,q)]

with

[image: a(u,p;v,q) =&\ \nu \left<\nabla (u), \nabla (v)\right>_\Omega
 - \nu \left<\nabla (u) n, v\right>_{\partial \Omega_{\textrm{circle}}} \\
 & - \left<p, \textrm{div} v \right>_{\Omega}
 + \left<p n, v\right>_{\partial \Omega_{\textrm{circle}}}
 - \left<q, \textrm{div} u \right>_{\Omega}
 \\
L(u,p;v,q) =&\ 0]

Note that we only need to include boundary integrals over the
circle, as other boundary terms vanish due to the application of
strong Dirichlet conditions.

To apply the symmetric Nitsche approach on the circle boundary, we
introduce new boundary terms to the left hand side [image: a] such
that the resulting problem becomes symmetric, plus the Nitsche term
[image: \frac{\gamma}{h} \nu \left<u,v\right>_{\partial
\Omega_{\textrm{circle}}}]. Furthermore, we add the same terms to
the right hand side [image: L] with [image: u] substituted by the
boundary value [image: g]. This yields the weak formulation:

[image: a(u, v) =&\ \nu \left<\nabla (u), \nabla (v)\right>_\Omega
 - \nu \left<\nabla (u) n, v\right>_{\partial \Omega_{\textrm{circle}}}
 - \nu \left<\nabla (v) n, u\right>_{\partial \Omega_{\textrm{circle}}}
 + \frac{\gamma}{h} \nu \left<u,v\right>_{\partial \Omega_{\textrm{circle}}} \\
 & - \left<p, \textrm{div} v \right>_{\Omega}
 + \left<p n, v\right>_{\partial \Omega_{\textrm{circle}}}
 - \left<q, \textrm{div} u \right>_{\Omega}
 + \left<q n, u\right>_{\partial \Omega_{\textrm{circle}}}
 \\
L(u, v) =&\ - \nu \left<\nabla (v) n, g\right>_{\partial \Omega_{\textrm{circle}}}
 + \frac{\gamma}{h} \nu \left<g,v\right>_{\partial \Omega_{\textrm{circle}}}
 + \left<q n, g\right>_{\partial \Omega_{\textrm{circle}}}]

In code, this becomes:

a = (nu*inner(grad(u), grad(v))*dx
 - nu*inner(grad(u)*n, v)*ds(2)
 - nu*inner(grad(v)*n, u)*ds(2)
 + gamma/h*nu*inner(u, v)*ds(2)
 - inner(p, div(v))*dx
 + inner(p*n, v)*ds(2)
 - inner(q, div(u))*dx
 + inner(q*n, u)*ds(2)
)
L = (- nu*inner(grad(v)*n, g)*ds(2)
 + gamma/h*nu*inner(g, v)*ds(2)
 + inner(q*n, g)*ds(2)
)

Next we assemble and solve the system once to record it with
dolin-adjoint.

A, b = assemble_system(a, L, bcs)
solve(A, s.vector(), b)

Next we define the functional of interest [image: J], the
optimisation parameter [image: g], and derive the create the reduced
functional.

u, p = split(s)
alpha = Constant(10)

J = Functional(1./2*inner(grad(u), grad(u))*dx + alpha/2*inner(g, g)*ds(2))
m = Control(g)
Jhat = ReducedFunctional(J, m)

Now, everything is set up to run the optimisation and to plot the
results. By default, minimize uses the L-BFGS-B
algorithm.

g_opt = minimize(Jhat)
plot(g_opt, title="Optimised boundary")

g.assign(g_opt)
A, b = assemble_system(a, L, bcs)
solve(A, s.vector(), b)
plot(s.sub(0), title="Velocity")
plot(s.sub(1), title="Pressure")
interactive()

Results

The example code can be found in examples/stokes-bc-control in
the dolfin-adjoint source tree, and executed as follows:

$ python stokes-bc-control.pystokes_bc_control.py
 ...
 At iterate 9 f= 1.98909D+01 |proj g|= 6.05347D-04

 At iterate 10 f= 1.98909D+01 |proj g|= 1.12697D-04

 At iterate 11 f= 1.98909D+01 |proj g|= 7.03065D-05

 * * *

 Tit = total number of iterations
 Tnf = total number of function evaluations
 Tnint = total number of segments explored during Cauchy searches
 Skip = number of BFGS updates skipped
 Nact = number of active bounds at final generalized Cauchy point
 Projg = norm of the final projected gradient
 F = final function value

 * * *

 N Tit Tnf Tnint Skip Nact Projg F
 14384 11 13 1 0 0 7.031D-05 1.989D+01
 F = 19.890932240156282

 CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH

 Cauchy time 0.000E+00 seconds.
 Subspace minimization time 0.000E+00 seconds.
 Line search time 0.000E+00 seconds.

 Total User time 0.000E+00 seconds.

The results are visualised in the following images. The first image
shows the optimised control function, i.e. the Dirichlet values on
the circle boundary which minimise the loss of flow energy into
heat.

[image: ../../_images/optimal_control.png]
The next image shows the associated velocity:

[image: ../../_images/velocity.png]
And the final image shows the pressure:

[image: ../../_images/pressure.png]

		[2E-BH07]		Y. Bazilevs and T.J.R. Hughes. Weak imposition of Dirichlet boundary conditions in fluid mechanics. Computers & Fluids, 36(1):12–26, 2007. doi:10.1016/j.compfluid.2005.07.012 [http://dx.doi.org/10.1016/j.compfluid.2005.07.012].

		[2E-Han05]		P Hansbo. Nitsche’s method for interface problems in computational mechanics. GAMM-Mitteilungen, 28(2):183–206, 2005.

		[2E-Nit71]		J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. In Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, volume 36, 9–15. Springer, 1971. doi:10.1007/BF02995904 [http://dx.doi.org/10.1007/BF02995904].

 © Copyright 2015, The dolfin-adjoint team.

documentation/klein/klein.html

 Navigation

 		
 index

 		
 modules |

 		 »

Sensitivity analysis of the heat equation on a Gray’s Klein bottle

Section author: Simon W. Funke <simon@simula.no>

Background

When working with computational models, it is often desirable to study the
impact of input parameters on a particular model output (the objective value).
The obvious approach to obtain this sensitivity information is to perturb each
input variable independently and observe how the objective value changes.
However, this approach quickly becomes infeasible if the number of input
variables grows or if the model is computationally expensive.

One of the key advantages of the adjoint method is that the computational cost
for obtaining sensitivities is nearly independent of the number of input
variables. This allows us to compute sensitivities with respect to millions
of input variables, or even with respect to entire input functions!

In the following example we consider a time-dependent model and apply
dolfin-adjoint to determine the sensitivity of the final solution with respect
to changes in its initial condition.

Problem definition

The partial differential equation for this example is the time-dependent heat-equation:

[image: \frac{\partial u}{\partial t} - \nu \nabla^{2} u= 0
 \quad & \textrm{in } \Omega \times (0, T), \\
u = g \quad & \textrm{for } \Omega \times \{0\}.]

where [image: \Omega] is the spatial domain, [image: T] is the final time, [image: u]
is the unkown temperature variation, [image: \nu] is the thermal diffusivity, and
[image: g] is the initial temperature.

The objective value, the model output of interest, is the norm of the
temperature variable at the final time:

[image: J(u) := \int_\Omega u(t=T)^2 \textrm{d} \Omega]

The aim of this example is to compute the sensitivity of [image: J] with
respect to the initial condition [image: g], that is:

[image: \frac{\textrm{d}J}{\textrm{d} g}]

Note that we did not specify any boundary conditions for the heat equation
above. The reason is that for this example the domain [image: \Omega] is a
closed manifold, that is a manifold without a boundary. More specifically the
domain is a 2D manifold embedded in 3D, the Gray’s Klein bottle [http://paulbourke.net/geometry/klein/] with parameters a = 2, n = 2 and m =
1. The meshed Klein bottle looks like this:

[image: ../../_images/klein-bottle.png]

Implementation

We start the implementation by importing the dolfin and
dolfin_adjoint modules.

from dolfin import *
from dolfin_adjoint import *

Next we load a triangulation of the Klein bottle as a mesh file.

mesh = Mesh("klein.xdmf")

FEniCS natively supports solving partial differential equations on manifolds
[0E-RMET13], so nothing else needs to be done here. The code for
generating this mesh, can be found in examples/klein/make_mesh.py in the
dolfin-adjoint source tree.

Next we create the required functions to solve the heat equation. First we
define a discrete function space based on a linear, continuous finite element.
Then we create the solution, test and trial functions for the variational
formulation. Finally, we define the initial temperature and the thermal
diffusivity coefficient.

Function space for the PDE solution
V = FunctionSpace(mesh, "CG", 1)

Solution at the current time level
u = Function(V)

Solution at the previous time level
u_old = Function(V)

Test function
v = TestFunction(V)

Initial condition
g = interpolate(Expression("sin(x[2])*cos(x[1])"), V)

Thermal diffusivity
nu = 1.0

Now we discretise the problem in time and implement the variational
formulation of the problem. By multiplying the heat equation with a
testfunction [image: v \in V], integrating the Laplace term by parts, and
applying a backward Euler time-discretisation, the discrete problem reads:
Given [image: u_{\textrm{old}} \in V], find [image: u \in V] such that for all
[image: v \in V]:

[image: \frac{1}{\textrm{step}} \int_\Omega \left(u - u_{\textrm{old}} \right) v \textrm{d} \Omega + \nu \int_\Omega \nabla u \cdot \nabla v \textrm{d}\Omega = 0]

or in code:

Set the options for the time discretization
T = 1.
t = 0.0
step = 0.1

Define the variational formulation of the problem
F = u*v*dx - u_old*v*dx + step*nu*inner(grad(v), grad(u))*dx

One remark before we continue with solving the forward problem. Generally,
the adjoint equations depend on the solutions of the forward model.
Therefore, dolfin-adjoint stores every forward solution in memory by default.
While this approach is fast, it requires significant memory which can
quickly become infeasible for large-scale, time-dependent applications. For
such situations, an optimal checkpointing strategy based on the revolve
library [4M-GW00] may be used, which trades off memory required
for additional computational cost. The following code demonstrates how
checkpointing would be activated:

#adj_checkpointing('multistage', steps=11, snaps_on_disk=1, snaps_in_ram=3, verbose=True)

We leave checkpointing deactivated for now, but will present runtime results
with checkpointing at the end of this section. More information on
checkpointing can found in the checkpointing section.

The next step is to solve the time-dependent forward problem.

fwd_timer = Timer("Forward run")
fwd_time = 0

u_pvd = File("output/u.pvd")

Execute the time loop
u_old.assign(g, annotate=True)
while t <= T:
 t += step

 fwd_timer.start()
 solve(F == 0, u)
 u_old.assign(u)
 fwd_time += fwd_timer.stop()

 u_pvd << u
 adj_inc_timestep()

At the beginning of the time loop, the initial condition [image: g] is copied
into [image: u_{\textrm{old}}]. Note the annotate=True argument, which tells
dolfin-adjoint that this assignment is part of the forward model computation.
Without it, the model output would have no dependency on the initial condition
[image: g] and the sensitivity would just be 0. Also note the
adj_inc_timestep call. This
function indicates the end of a time step and is only required with
checkpointing enabled.

At this point, we can define the objective functional [image: J] and compute
the sensitivity with respect to the initial condition [image: g]:

J = Functional(inner(u, u)*dx*dt[FINISH_TIME])
m = Control(g)

adj_timer = Timer("Adjoint run")
dJdm = compute_gradient(J, m, project=True)
adj_time = adj_timer.stop()

Note the project=True flag for compute_gradient. It indicates that
the gradient should not be returned as an operator, that is not in the dual
space [image: V^*], but instead its Riesz representation in the primal space
[image: V]. This is necessary to plot the sensitivities without seeing mesh
dependent features.

Next we plot the computed sensitivity and print timing statistics comparing
the runtime of the forward and adjoint solves.

plot(dJdm, title="Sensitivity of ||u(t=%f)||_L2 with respect to u(t=0)." % t)
interactive()

print "Forward time: ", fwd_time
print "Adjoint time: ", adj_time
print "Adjoint to forward runtime ratio: ", adj_time / fwd_time

The example code can be found in examples/klein in the dolfin-adjoint
source tree, and executed as follows:

$ python klein.py
...
Forward time: 8.62722325325
Adjoint time: 7.75998806953
Adjoint to forward runtime ratio: 0.899476904879

Since the forward model is linear, the theoretical optimum of the adjoint and forward runtime ratio is 1.
Indeed, the observed value achieves this performances, and even slightly outperforms it.

The following image on the left shows the initial temperature variation
[image: u(T=0)] and the image on the right the final temperature variation
[image: u(T=1)]. The diffusion of the initial temperature variation over the
time period is clearly visible.

[image: ../../_images/u_combined.png]
The next image shows the computed sensitivity [image: \textrm{d} (\|u(t=1)\|) /
\textrm{d}(u(T=0))]:

[image: ../../_images/klein-sensitivity.png]

Checkpointing timings

Checkpointing is crucial to limit the memory requirements when running
large-scale models with many time steps.

In the following test, we investigate the additional computational cost when
using checkpointing over the default store-all strategy in dolfin-adjoint.
The following table compares the slow-down factor with 11 timesteps, no disk
checkpoints, and with varying memory checkpoints:

		Number of memory checkpoints
		2
		3
		4
		5
		11 (no checkpointing)

		Theoretical optimal adjoint to forward runtime ratio
		5.00
		2.18
		1.63
		1.45
		1.00

		Observed adjoint to forward runtime ratio
		5.07
		2.26
		1.73
		1.53
		0.90

These results indicate that the performance of dolfin-adjoint with
checkpointing is close to the predicted optimal performance.

References

		[4M-GW00]		A. Griewank and A. Walther. Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Transactions on Mathematical Software, 26(1):19–45, 2000. doi:10.1145/347837.347846 [http://dx.doi.org/10.1145/347837.347846].

		[0E-RMET13]		Cotter C. J., Rognes M. E., Ham D. A. and McRae A. T. T. Automating the solution of PDEs on the sphere and other manifolds in FEniCS 1.2. Geoscientific Model Development, 6(6):2099–2119, 2013. doi:10.5194/gmd-6-2099-2013 [http://dx.doi.org/10.5194/gmd-6-2099-2013].

 © Copyright 2015, The dolfin-adjoint team.

documentation/mpec/mpec.html

 Navigation

 		
 index

 		
 modules |

 		 »

Mathematical Programs with Equilibrium Constraints

Section author: Simon W. Funke <simon@simula.no>

This demo solves example 5.2 of [5E-HintermullerK11].

Problem definition

This problem is to minimise

[image: \min_{y, u} \frac{1}{2} || y - y_d ||^2_{\Omega} + \frac{\nu}{2} || u ||^2_{\Omega}]

subject to the variational inequality

[image: (\nabla y, \nabla (v - y))_\Omega &\ge (f + u, v - y)_\Omega \qquad \forall v \ge 0, v = 0 \ \mathrm{on}\ \delta \Omega, \\
y &\ge 0, \\
y &= 0 \quad \mathrm{on}\ \delta \Omega,]

and control constraints

[image: a \le u \le b \qquad \forall x \in \Omega,]

where [image: u] is the control, [image: y] is the solution of the
variational inequality, [image: y_d] is data to be matched, [image: f]
is a prescribed source term, [image: \nu] is a regularisation
parameter and [image: a, b] are upper and lower bounds for the
control.

This problem is fundamentally different to a PDE-constrained
optimisation problem in that the constraint is not a PDE, but a
variational inequality. Such problems are called Mathematical
Programs with Equilibrium Constraints (MPECs) and have applications
in engineering design (e.g. to determine optimal trajectories for
robots [5E-YG05] or process optimisation in chemical
engineering [5E-BRB08]) and in economics (e.g. in
leader-follower games [5E-LM05] and optimal pricing
[5E-LH04]).

Even though it is known that the above problem admits a unique
solution, there are some difficulties to be considered when solving
MPECs:

		the set of feasible points is in general not necessarly convex or connected, and

		the reduced problem is not Fréchet-differentiable.

Following [5E-HintermullerK11], we will overcome these issues
in the next section with a penalisation approach. For a more
thorough discussion on MPECs, see [5E-ZQJSD96] and the references
therein.

Penalisation technique

A common approach for solving variational inequalities is to
approximate them by a sequence of nonlinear PDEs with a penalisation
term. We transform the above problem into a sequence of
PDE-constrained optimisation problems, which can be solved with
dolfin-adjoint.

For the above problem we use the approximation

[image: (\nabla y, \nabla v)_\Omega + \frac{1}{\alpha} (\pi(y), v)_\Omega = (f + u, v)_\Omega \qquad \forall v, \\]

where [image: \alpha > 0] is the penalty parameter and the penalty term
is defined as

[image: \pi(y) = -\max(0, y).]

This approximation yields solutions which converge to the solution of
the variational inequality as [image: \alpha \to 0] (see chapter IV of
[5E-KS00]).

In order to be able to apply a gradient-based optimisation method, we
need differentiabilty of the above equation. The [image: \max]
operator is not differentiable at the origin, and hence it is replaced
by a smooth ([image: C^1]) approximation (plot modified from
[5E-HintermullerK11]):

[image: {\max}_{\epsilon}(0, y) =
\begin{cases}
y - \frac{\epsilon}{2} & \mbox{if } y \ge 0, \\
 \frac{y^2}{2\epsilon} & \mbox{if } y \in (0, \epsilon), \\
 0 & \mbox{if } y \le 0.
\end{cases}]

[image: ../../_images/mpec-smoothmax.jpg]
The domain for the example problem is the unit square [image: \Omega =
(0, 1)^2]. The data and the source term are given as [image: y_d(x, y)
= f(x, y) = -|xy - 0.5| + 0.25]. The remaining parameters are
[image: a = 0.01], [image: b = 0.03] and [image: \nu = 0.01].

Implementation

First, the dolfin and dolfin_adjoint modules are
imported. We also tell DOLFIN to only print error messages to keep the
output comprehensible:

from dolfin import *
from dolfin_adjoint import *
set_log_level(ERROR)

Next, we define the smooth approximation [image: \max_{\epsilon}] of
the maximum operator:

def smoothmax(r, eps=1e-4):
 return conditional(gt(r, eps), r - eps/2, conditional(lt(r, 0), 0, r**2 / (2*eps)))

Now, we are ready to mesh the domain and define the discrete function
spaces. For this example we use piecewise linear, continuous finite
elements for both the solution and control.

mesh = UnitSquareMesh(128, 128)
V = FunctionSpace(mesh, "CG", 1) # The function space for the solution and control functions
y = Function(V, name="Solution")
u = Function(V, name="Control")
w = TestFunction(V)

Next, we define and solve the variational formulation of the PDE
constraint with the penalisation parameter set to
[image: \alpha=10^{-2}]. This initial value of [image: \alpha] will
then be iteratively reduced to better approximate the underlying MPEC.

alpha = Constant(1e-2)
The source term
f = interpolate(Expression("-std::abs(x[0]*x[1] - 0.5) + 0.25"), V)
F = inner(grad(y), grad(w))*dx - 1 / alpha * inner(smoothmax(-y), w)*dx - inner(f + u, w)*dx
bc = DirichletBC(V, 0.0, "on_boundary")
solve(F == 0, y, bcs=bc)

With the forward problem solved once, dolfin_adjoint has
built a tape of the forward model; it will use this tape to drive
the optimisation, by repeatedly solving the forward model and the
adjoint model for varying control inputs.

We finish the initialisation part by defining the functional of
interest, the optimisation parameter and creating the reduced
functional object:

yd = Function(f, name="Data")
nu = 0.01
J = Functional(0.5*inner(y - yd, y - yd)*dx + nu/2*inner(u, u)*dx)

Formulate the reduced problem
m = Control(u) # Create a parameter from u, as it is the variable we want to optimise
alpha_m = Control(alpha) # Also tell dolfin-adjoint that alpha is a parameter,
 # this will allow us to modify its value on the tape
Jhat = ReducedFunctional(J, m)

Create output files
ypvd = File("output/y_opt.pvd")
upvd = File("output/u_opt.pvd")

Next, we implement the main loop of the algorithm. In every iteration
we will halve the penalisation parameter and (re-)solve the
optimisation problem. The optimised control value will then be used as
an initial guess for the next optimisation problem.

We begin by defining the loop and updating the [image: \alpha] value.

for i in range(4):
 # Update the penalisation value
 alpha.assign(float(alpha)/2)
 info_green("Set alpha to %f." % float(alpha))

We rely on a useful property of dolfin-adjoint here: if a Constant
object is used as a control (here achieved by creating the
Control object
above), dolfin-adjoint does not copy that Constant object, but
keeps a reference to it instead. That means that assigning a new
value to alpha has the effect that the optimisation routine will
automatically use that new value.

Next we solve the optimisation problem for the current alpha. We
use the L-BFGS-B optimisation algorithm here [5E-ZBLN97] and
select a set of sensible stopping criteria:

u_opt = minimize(Jhat, method="L-BFGS-B", bounds=(0.01, 0.03), options={"gtol": 1e-12, "ftol": 1e-100})

The following step is optional and implements a performance
improvement. The idea is to use the optimised state solution as an
initial guess for the Newton solver in the next optimisation round.
It demonstrates how one can access and modify variables on the
dolfin-adjoint tape.

First, we extract the optimised state (the y function) from the
tape. This is done with the DolfinAdjointVariable.tape_value()
function. By default it returns the last known iteration of that
function on the tape, which is exactly what we want here:

y_opt = DolfinAdjointVariable(y).tape_value()

The next line modifies the tape such that the initial guess for y
(to be used in the Newton solver in the forward problem) is set to
y_opt. This is achieved with the
FunctionControl.update function:

Control(y).update(y_opt)

Finally, we store the optimal state and control to disk and print some
statistics:

ypvd << y_opt
upvd << u_opt
feasibility = sqrt(assemble(inner((Max(Constant(0.0), -y_opt)), (Max(Constant(0.0), -y_opt)))*dx))
info_green("Feasibility: %s" % feasibility)
info_green("Norm of y: %s" % sqrt(assemble(inner(y_opt, y_opt)*dx)))
info_green("Norm of u_opt: %s" % sqrt(assemble(inner(u_opt, u_opt)*dx)))

The example code can be found in examples/mpec/ in the
dolfin-adjoint source tree, and executed as follows:

$ python mpec.py
Set alpha to 0.005000.
...
Feasibility: 0.000350169305795
Norm of y: 0.0022809992669
Norm of u_opt: 0.021222354644

...

Tit = total number of iterations
Tnf = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches
Skip = number of BFGS updates skipped
Nact = number of active bounds at final generalized Cauchy point
Projg = norm of the final projected gradient
F = final function value

 * * *

 N Tit Tnf Tnint Skip Nact Projg F
16641 7 8 85 0 15982 6.192D-13 1.206D-02
 F = 1.2064186622885919E-002

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL

 Cauchy time 1.320E-03 seconds.
 Subspace minimization time 9.575E-04 seconds.
 Line search time 8.612E+00 seconds.

 Total User time 9.847E+00 seconds.

Feasibility: 8.56988113345e-05
Norm of y: 0.00232945325255
Norm of u_opt: 0.0217167930891

The optimal control and state can be visualised by opening
output/u.pvd and output/y.pvd in paraview. The optimal control
should look like the image on the left and the optimal state like the
image on the right:

[image: ../../_images/mpec.png]
References

		[5E-BRB08]		B.T. Baumrucker, J.G. Renfro, and L.T. Biegler. MPEC problem formulations and solution strategies with chemical engineering applications. Computers & Chemical Engineering, 32(12):2903 – 2913, 2008. doi:http://dx.doi.org/10.1016/j.compchemeng.2008.02.010 [http://dx.doi.org/http://dx.doi.org/10.1016/j.compchemeng.2008.02.010].

		[5E-HintermullerK11]		(1, 2, 3) M. Hintermüller and I. Kopacka. A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs. Computational Optimization and Applications, 50(1):111–145, 2011. URL: http://dx.doi.org/10.1007/s10589-009-9307-9, doi:10.1007/s10589-009-9307-9 [http://dx.doi.org/10.1007/s10589-009-9307-9].

		[5E-KS00]		D. Kinderlehrer and G. Stampacchia. An introduction to variational inequalities and their applications. volume 31 of Classics in Applied Mathematics. SIAM, 2000.

		[5E-LH04]		S. Lawphongpanich and D.W. Hearn. An MPEC approach to second-best toll pricing. Mathematical Programming, 101(1):33–55, 2004. doi:10.1007/s10107-004-0536-5 [http://dx.doi.org/10.1007/s10107-004-0536-5].

		[5E-LM05]		S. Leyffer and T. Munson. Solving multi-leader-follower games. Preprint ANL/MCS-P1243-0405, 4:04, 2005.

		[5E-YG05]		K. Yunt and C. Glocker. Time-optimal trajectories of a differential-drive robot. In Proceedings of the Fifth Euromech Nonlinear Dynamics Conference, 1589–1596. 2005.

		[5E-ZQJSD96]		Luo Z.-Q., Pang J.-S., and Ralph D. Mathematical programs with equilibrium constraints. Cambridge University Press, 1996.

		[5E-ZBLN97]		C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions on Mathematical Software, 23(4):550–560, 1997. doi:10.1145/279232.279236 [http://dx.doi.org/10.1145/279232.279236].

 © Copyright 2015, The dolfin-adjoint team.

documentation/maths/A-gst.html

 Navigation

 		
 index

 		
 modules |

 		 »

Generalised stability theory

Introduction

The stability of a physical system is a classical problem of
mechanics, with contributions from authors such as Lagrange, Dirichlet
and Lyapunov [AM-Lei10]. Stability investigates the response of
the system to small perturbations in its initial condition: if the
solutions of the perturbed systems remain within a neighbourhood of
the unperturbed solution, then the system is stable; otherwise, the
system is unstable at that initial condition.

The traditional approach for investigating the stability of physical
systems was given by Lyapunov [AM-Lya92]. The (nonlinear)
equations of motion are linearised about a base solution, and the
eigenvalues of the linearised system are computed. If all eigenvalues
have negative real part, then there exists a finite region of
stability around the initial condition: perturbations within that
region decay to zero, and the system is asymptotically stable
[AM-Par92].

While this approach has had many successes, several authors have noted
that it does not give a complete description of the finite-time
stability of a physical system. While the eigendecomposition
determines the asymptotic stability of the linearised equations as
[image: t \rightarrow \infty], some systems permit transient
perturbations which grow in magnitude, before being predicted to
decay. However, if the perturbations grow too large, the linearised
equations may cease to hold, and the system may become unstable due to
nonlinear effects. More specifically, this transient growth occurs
when the system is non-normal, i.e. when the eigenfunctions of the
system do not form an orthogonal basis [5M-Sch07]. For
example, Trefethen [1M-TTRD93] describes how the traditional
approach fails to give accurate stability predictions for several
classical problems in fluid mechanics, and resolves the problem by
analysing the nonnormality of the system in terms of pseudospectra
[5M-TE05].

Therefore, this motivates the development of a finite-time theory of
stability, to investigate and predict the transient growth of
perturbations. While Lorenz [5M-Lor65] discussed the core
ideas (without using modern nomenclature), the development of this
so-called generalised stability theory (GST) has been driven by the
work of B. F. Farrell and co-workers [AM-Far82]
[AM-Far85] [1M-FI96] [AM-FI96]. The main
idea is to consider the linearised propagator of the system, the
operator (linearised about the time-dependent trajectory) that maps
perturbations in the initial conditions to perturbations in the final
state. Essentially, the propagator is the inverse of the tangent
linear system associated with the nonlinear forward model, along with
operators to load the initial perturbation and select the final
perturbation. The perturbations that grow maximally over the time
window are given by the singular functions of the propagator
associated with the largest singular values. Since the linearised
propagator depends on the base solution, it follows that the
predictability of the system depends on the conditions of the base
solution itself: some states are inherently more predictable than
others [5M-Lor65] [5M-Kal02].

The singular value decomposition of the propagator

This presentation of generalised stability theory will consider the
stability of the system to perturbations in the initial conditions,
but the same approach can be applied to analysing the stability of the
system to perturbations in other parameters.

Consider the solution of the model at the final time [image: u_T] as a
pure function of the initial condition [image: u_0]:

[image: u_T = M(u_0),]

where [image: M] is the nonlinear propagator that advances the
solution in time over a given finite time window [image: [0, T]].
Other parameters necessary for the solution (e.g. boundary conditions,
material parameters, etc.) are considered fixed. Assuming the model
is sufficiently differentiable, the response of the model [image: M] to
a perturbation [image: \delta u_0] in [image: u_0] is given by

[image: \delta u_T = M(u_0 + \delta u_0) - M(u_0) = \frac{\textrm{d} M}{\textrm{d} u_0} \delta u_0 + O(\left|\left|\delta u_0\right|\right|^2).]

Neglecting higher-order terms, the linearised perturbation to the
final state is given by

[image: \delta u_T \approx L \delta u_0,]

where [image: L] is the linearised propagator (or just propagator)
[image: {\textrm{d} M}/{\textrm{d} u_0}] that advances perturbations in
the initial conditions to perturbations to the final solution.

To quantify the stability of the system, we wish to identify
perturbations [image: \delta u_0] that grow the most over the time
window [image: [0, T]]. For simplicity, equip both the initial
condition and final solutions with the conventional inner product
[image: \left\langle \cdot, \cdot \right\rangle]. We seek the initial
perturbation [image: \delta u_0] of unit norm [image: \left|\left|\delta
u_0\right|\right| = \sqrt{\left\langle \delta u_0, \delta u_0
\right\rangle} = 1] such that

[image: \delta u_0 = \operatorname*{arg\,max}_{\left|\left|\delta u_0\right|\right|} \left\langle \delta u_T, \delta u_T \right\rangle.]

Expanding [image: \delta u_T] in terms of the propagator,

[image: \left\langle \delta u_T, \delta u_T \right\rangle = \left\langle L \delta u_0, L \delta u_0 \right\rangle = \left\langle \delta u_0, L^*L \delta u_0 \right\rangle,]

we see that the leading perturbation is the eigenfunction of
[image: L^*L] associated with the largest eigenvalue [image: \mu], and
the growth of the norm of the perturbation is given by
[image: \sqrt{\mu}]. In other words, the leading initial perturbation
[image: \delta u_0] is the leading right singular function of
[image: L], the resulting final perturbation [image: \delta u_T] is the
associated left singular function, and the growth rate of the
perturbation is given by the associated singular value
[image: \sigma]. The remaining singular functions offer a similar
physical interpretation: if a singular function [image: v] has an
associated singular value [image: \sigma > 1], the perturbation will
grow over the finite time window [image: [0, T]]; if [image: \sigma <
1], the perturbation will decay over that time window.

If the initial condition and final solution spaces are equipped with
inner products [image: \left\langle \cdot, \cdot \right\rangle_I \equiv
\left\langle \cdot, X_I \cdot \right\rangle] and [image: \left\langle
\cdot, \cdot \right\rangle_F \equiv \left\langle \cdot, X_F \cdot
\right\rangle] respectively, then the leading perturbations are given
by the eigenfunctions

[image: X_I^{-1} L^* X_F L \delta u_0 = \mu \delta u_0.]

The operators [image: X_I] and [image: X_F] must be symmetric
positive-definite. In the finite element context, [image: X_I] and
[image: X_F] are often the mass matrices associated with the input and
output spaces, as these matrices induce the functional [image: L_2]
norm.

Computing the propagator

In general, the nonlinear propagator [image: M] that maps initial
conditions to final solutions is not available as an explicit
function; instead, a PDE is solved. For clarity, let [image: m] denote
the data supplied for the initial condition. The PDE may be written in
the abstract implicit form

[image: F(u, m) = 0,]

with the understanding that [image: u_0 = m]. We assume that for any
initial condition [image: m], the PDE can be solved for the solution
trajectory [image: u], and the nonlinear propagator [image: M] can then
be computed by returning the solution at the final
time. Differentiating the PDE with respect to the initial condition
data [image: m] yields

[image: \frac{\partial F}{\partial u} \frac{\textrm{d}u}{\textrm{d}m} = - \frac{\partial F}{\partial m},]

the tangent linear system associated with the PDE. The term
[image: {\partial F}/{\partial u}] is the PDE operator linearised about
the solution trajectory [image: u]: therefore, it is linear, even when
the original PDE is nonlinear. [image: {\partial F}/{\partial m}]
describes how the equations change as the initial condition data
[image: m] changes, and acts as the source term for the tangent linear
system. [image: {\textrm{d}u}/{\textrm{d}m}] is the prognostic variable
of the tangent linear system, and describes how the solution changes
with changes to [image: m]. To evaluate the action of the propagator
[image: L] on a given perturbation [image: \delta m], the tangent linear
system is solved with that particular perturbation, and evaluated at
the final time:

[image: L \delta m \equiv - \left.\left(\frac{\partial F}{\partial u}\right)^{-1}\frac{\partial F}{\partial m} \delta m\right|_T.]

Therefore, to automate the generalised stability analysis of a PDE, it
is necessary to automatically derive and solve the associated tangent
linear system. Furthermore, as the GST analysis also requires the
adjoint of the propagator, it is also necessary to automatically
derive and solve the adjoint of the tangent linear system. This is why
GST is considered as an application of adjoints.

Singular value computation

Once the propagator [image: L] is available, its singular value
decomposition may be computed. There are two main computational
approaches. The first approach is to compute the eigendecomposition of
the cross product matrix [image: L^*L] (or [image: LL^*], whichever is
smaller). The second is to compute the eigendecomposition of the
cyclic matrix

[image: H(L) =
\begin{pmatrix} 0 & L \\
 L^* & 0
\end{pmatrix}]

As explained in [5M-TB97], the latter option is more
accurate for computing the small singular values, but is more
expensive. As we are only interested in a small number of the largest
singular triplets, the cross product approach is used throughout this
work. Note that regardless of which approach is taken, the adjoint
propagator [image: L^*] is necessary to compute the SVD of [image: L].

The algorithm used to compute the eigendecomposition of the cross
product matrix is the Krylov-Schur algorithm [AM-Ste01], as
implemented in SLEPc [http://www.grycap.upv.es/slepc/]
[AM-HRV05] [AM-HRTV07]. As the matrix is
Hermitian (whether norms are used or not), this algorithm reduces to
the thick-restart variant [AM-WS00] of the Lanczos method
[AM-Lan50]. This algorithm was found experimentally to be
faster than all other algorithms implemented in SLEPc for the
computation of a small number of singular triplets, which is the case
of interest in stability analysis.

Rather than representing the propagator as a matrix, the action of the
propagator is computed in a matrix-free fashion, using the tangent
linear model. In turn, the entire time-dependent tangent linear model
is not stored, but its action is computed in a global-matrix-free
fashion, using the matrices associated with each individual equation
solve. In turn, the solution of each equation solve may optionally be
achieved in a matrix-free fashion; the automatic derivation of the
tangent linear and adjoint systems supports such an approach.
Similarly, the adjoint propagator is computed in a matrix-free fashion
using the adjoint model. SLEPc elegantly supports such matrix-free
computations through the use of PETSc shell matrices [AM-BBB+11]
[AM-BGMS97].

For more information on how to perform a generalised stability
analysis with dolfin-adjoint, see the chapter in the
documentation on generalised stability analysis.

References

		[AM-BBB+11]		S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical Report ANL-95/11, Argonne National Laboratory, 2011. Revision 3.2.

		[AM-BGMS97]		S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, 163–202. Birkhäuser Press, 1997.

		[AM-Far82]		B. F. Farrell. The initial growth of disturbances in a baroclinic flow. Journal of Atmospheric Sciences, 39(8):1663–1686, 1982. doi:10.1175/1520-0469(1982)039<1663:TIGODI>2.0.CO;2 [http://dx.doi.org/10.1175/1520-0469(1982)039<1663:TIGODI>2.0.CO;2].

		[AM-Far85]		B. F. Farrell. Transient growth of damped baroclinic waves. Journal of Atmospheric Sciences, 42(24):2718–2727, 1985. doi:10.1175/1520-0469(1985)042<2718:TGODBW>2.0.CO;2 [http://dx.doi.org/10.1175/1520-0469(1985)042<2718:TGODBW>2.0.CO;2].

		[AM-FI96]		B. F. Farrell and P. J. Ioannou. Generalized stability theory. Part II: Nonautonomous operators. Journal of Atmospheric Sciences, 53(14):2041–2053, 1996. doi:10.1175/1520-0469(1996)053<2041:GSTPIN>2.0.CO;2 [http://dx.doi.org/10.1175/1520-0469(1996)053<2041:GSTPIN>2.0.CO;2].

		[AM-HRTV07]		V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal. Krylov-Schur methods in SLEPc. Technical Report STR-7, Universitat Politècnica de València, 2007.

		[AM-HRV05]		V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Transactions on Mathematical Software, 31(3):351–362, 2005. doi:hernandez2005 [http://dx.doi.org/hernandez2005].

		[AM-Lan50]		C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. Journal of Research of the National Bureau of Standards, 45(4):255–282, 1950.

		[AM-Lei10]		R. Leine. The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability. Nonlinear Dynamics, 59(1):173–182, 2010. doi:10.1007/s11071-009-9530-z [http://dx.doi.org/10.1007/s11071-009-9530-z].

		[AM-Lya92]		A. M. Lyapunov. The General Problem of the Stability of Motion. Control Theory and Applications Series. Taylor & Francis, 1892. Translated by A. T. Fuller.

		[AM-Par92]		P. C. Parks. A. M. Lyapunov’s stability theory—100 years on. IMA Journal of Mathematical Control and Information, 9(4):275–303, 1992. doi:10.1093/imamci/9.4.275 [http://dx.doi.org/10.1093/imamci/9.4.275].

		[AM-Ste01]		G. Stewart. A Krylov–Schur algorithm for large eigenproblems. SIAM Journal on Matrix Analysis and Applications, 23(3):601–614, 2001. doi:10.1137/S0895479800371529 [http://dx.doi.org/10.1137/S0895479800371529].

		[AM-WS00]		K. Wu and H. Simon. Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, 22(2):602–616, 2000. doi:10.1137/S0895479898334605 [http://dx.doi.org/10.1137/S0895479898334605].

 © Copyright 2015, The dolfin-adjoint team.

documentation/maths/5-applications.html

 Navigation

 		
 index

 		
 modules |

 		 »

Applications of adjoints

As mentioned in the introduction, adjoints (and tangent linear models)
have many applications in many different areas of computational
science. In this section, we aim to give a very brief overview of
each application in which adjoints are used, with the intent of
getting the basic idea across.

For each application, a very brief literature review is provided,
giving pointers to some key references which may be used to explore
the field. I make no claim that these reviews are comprehensive;
naturally, I am personally more familiar with some areas than
others. Contributions to this section are very welcome.

PDE-constrained optimisation

As discussed in the previous sections, adjoints form the core
technique for efficiently computing the gradient
[image: {\mathrm{d}J(u, m)}/{\mathrm{d}m}] of a functional [image: J] to
be minimised. This is usually essential for solving such optimisation
problems in practice: gradient-free optimisation algorithms typically
take orders of magnitude more iterations to converge; since each
iteration involves a PDE solve, minimising the number of iterations
taken is crucial.

For an engineering introduction to PDE-constrained optimisation,
Gunzburger’s book is excellent [1M-Gun03]; for an in-depth
mathematical analysis, see the rigorous treatment of Hinze et
al. [1E-HPUU09]. PDE-constrained optimisation is also referred
to in the literature as optimal control: the book of Lions
[5M-Lio71] was a fundamental early contribution.

Sensitivity analysis

Occasionally, the gradient of a functional [image: J] with respect to
some parameter [image: m] is not merely required as an input to an
optimisation algorithm, but rather is of scientific interest in its
own right. Adjoint computations can tease apart hidden influences and
teleconnections; such computations can also inform scientists
regarding which variables matter the least, which is often important
for deriving approximate models; parameters with little impact on the
simulation can be ignored. This process is also often undertaken in
advance of solving an optimisation problem: by discarding parameters
which do not significantly influence the functional, the dimension of
the parameter space may be systematically reduced.

A fundamental early contribution was the work of Cacuci
[5M-Cac81]. Much excellent work in applying sensitivity
analysis to questions of enormous scientific importance has been done
in the areas of oceanography and meteorology: partly because ocean and
atmospheric models often have adjoint versions implemented for the
purposes of data assimilation, partly because adjoint analysis is
often the only practical way of identifying such connections, and
partly because practitioners in these fields are aware of adjoints and
their potential. Of particular note is the work done by Heimbach and
co-workers using the adjoint of the MITgcm ocean model [http://mitgcm.org] [1M-LH07] [5M-HML+10]
[5M-HL12].

Data assimilation

A forward model requires data on which to operate. For example, to
start a weather forecast, knowledge of the entire state of the
atmosphere at some point in time is required as an initial condition
from which to begin the simulation: start from the wrong initial
condition, and you will get the wrong weather.

The problem is that, in practice, the initial condition is
unknown. Instead, observations of the state of the atmosphere are
available, some available at the initial time, and some taken at later
times. The goal of data assimilation is to systematically combine
observations and computations, usually with the intention of acquiring
the best possible estimate of the unknown initial condition, so that a
forecast may be run. Indeed, most of the dramatic increase in forecast
skill over the past decade has been attributable to improvements in
data assimilation algorithms (Prof. Dale Barker, UK Met Office,
personal communication). This problem is routinely tackled in every
meteorological centre in the world, multiple times a day: your weather
forecast relies entirely upon it.

There are two major approaches to data assimilation. In a sequential
algorithm, the forward system is timestepped until an observation is
available, at which point the model is instantaneously “updated” to
incorporate the information contained in the observation. The most
popular approach to computing the amplitude of the update is the
Kalman filter algorithm [5M-Kal60]. The model is then
continued from this updated state until all of the observations are
used. A significant drawback of this approach is that an observation
only influences the state at times later than the observation time: in
other words, its temporal influence only propagates forward, not
backwards in time. This is a major disadvantage in the case where the
initial condition is the main quantity of interest, and most of the
observations are made towards the end of the time window, as is the
case in studies of mantle convection [5M-BHT03].

The other major approach is referred to as variational data
assimilation, which is a special case of PDE-constrained
optimisation. In this approach, a functional [image: J] is chosen to
represent the misfit between the observations and the computations,
weighted by the uncertainties in each. The initial condition is
treated as a control parameter [image: m], and chosen to minimise the
misfit [image: J]. The data assimilation community tends to place
significant emphasis on modelling the uncertainties in both the
computations and observations, as this is key to extracting the
maximal amount of information out of both.

The ECCO2 project

One of the most impressive computational experiments ever attempted
is the ECCO2 project [http://ecco2.org], which uses the adjoint
of the MITgcm ocean model [http://mitgcm.org]
[5M-HHG05] to assimilate every observation made of the
world’s oceans over the past twenty years [5M-Wun96]. With
this assimilation, they have produced the most accurate estimation
of the state of the world’s oceans ever devised. For a stunningly
beautiful visualisation of this experiment, see
http://vimeo.com/39333560.

Fundamental early works in field of variational data assimilation were
undertaken by Le Dimet and Talagrand [1M-LDT86] and Talagrand
and Courtier [1M-TC87]. For an excellent introduction, see
the book of Kalnay [5M-Kal02]. Information on the data
assimilation schemes used in practice by the European Centre for
Medium-range Weather Forecasting [http://www.ecmwf.int/research/ifsdocs/ASSIMILATION/Chap1_Overview2.html]
and the UK Met Office [http://www.metoffice.gov.uk/research/weather/data-assimilation-and-ensembles]
is available online.

Inverse problems

Data assimilation can be seen as a particular kind of inverse problem,
where the focus is on obtaining the best estimate for the system state
at some point in the past. More general inverse problems, where we
seek to gain information about unobservable system parameters from
observable system outputs, are ubiquitous in science and
engineering. Again, the same idea of minimising some functional that
measures the misfit between the observations and computed model
outputs plays a role. The field also has a heavy emphasis on
regularisation of inverse problems (which are generally ill-posed) and
on statistical estimates of uncertainty in the obtained results. For
an introductory textbook, see the book by Tarantola
[5M-Tar05]; for a review of the current state of the art in
computational practice, see the compendium of Biegler et
al. [5M-BMB+11].

Generalised stability theory

The stability of solutions of physical systems is obviously of key
importance in many fields. The traditional approach to stability
theory is to linearise the operator about some state, and investigate
its eigenvalues: if the real component of every eigenvalue is
negative, the state is stable, and the associated eigenmode will
vanish in the limit as [image: t \rightarrow \infty]; while if any
eigenvalue has a positive real part, the state is unstable, and the
associated eigenmode will grow in amplitude. While this traditional
approach works well in many cases, there are many important cases
where this analysis predicts stability where in fact the physical
system is unstable; in particular, this analysis fails when the
operator is nonnormal [1M-TTRD93] [5M-Sch07].

Nonnormal matrices

A matrix is normal if its eigenvectors form an orthonormal basis. A
matrix is nonnormal if the eigenvectors have nonzero projection onto
each other. See the Wikipedia entry [http://en.wikipedia.org/wiki/Normal_matrix] for more details.

In the nonnormal case, the usual stability theory fails. The two main
theoretical responses to this development have been the concepts of
pseudospectra (by Trefethen et al. [5M-TE05]) and
generalised stability theory (by Farrell et
al. [1M-FI96]). Instead of focusing on the eigenvalues of
the operator linearised about some steady state, generalised stability
theory analyses the generalised eigenvalues associated with the
propagator of the system, which maps perturbations in initial
conditions to perturbations in the final state. Essentially, the
propagator is the inverse of the tangent linear operator. By examining
these values, such an analysis can describe and predict the
perturbations that will grow maximally over finite time windows
[5M-Lor65]. In order to compute these generalised eigenvalues
of the system propagator, both the tangent linear and adjoint
operators must be repeatedly solved [5M-TB97].

As generalised stability theory yields information about the
perturbation directions which grow the most over the period of
interest, these vectors are often used to initialise ensemble members
to gain the optimal amount of information possible about the variance
of the ensemble [5M-IF05] [5M-Bui06]. The growth
rates associated with these optimal perturbations have important
implications for the timescales of predictability of the physical
system. For examples of this analysis, see the work of Zanna et
al. [5M-ZHMT12].

We also note in passing that it is possible to use these singular
vectors to guide the targeting of observations to maximise the
effectiveness of a data assimilation strategy. For more details, see
[5M-PGBB98].

For more details, see the appendix on generalised stability
theory.

Error estimation

Another major application of adjoints is goal-based error estimation,
and the related computational technique of goal-based adaptivity. For
the purposes of this section, let [image: u] and [image: \lambda] denote
the exact forward and adjoint solutions associated with the PDE
[image: F(u) = 0], and let [image: u_h] and [image: \lambda_h] be some
approximations to them computed using a Galerkin finite element
discretisation. The fundamental question of goal-based error
estimation is: what impact does the discretisation error [image: u -
u_h] have on the error in the goal functional [image: J(u) - J(u_h)]?
One can construct cases where [image: u - u_h] is large, but
[image: J(u) - J(u_h)] is zero; similarly, one can construct cases
where [image: u - u_h] is small, but [image: J(u) - J(u_h)] is large.

The fundamental theorem of error estimation, due to Rannacher and
co-workers [1M-BR01] [5M-BR03], states that

Residuals

To compute the forward residual [image: \rho_u], take the approximate
forward solution [image: u_h] and plug it in to the forward equation
[image: \rho_u \equiv F(u_h)]. If [image: u_h] were the exact
solution, [image: F(u_h)] would be zero, but since the solution is
only approximate [image: \rho_u \equiv F(u_h)] will be nonzero.

To compute the adjoint residual, perform the analogous computation:
take the approximate adjoint solution [image: \lambda_h] and plug it
in to the adjoint equation, and take all terms in the adjoint
equation to the left-hand side.

[image: J(u) - J(u_h) = \frac{1}{2} \left\langle \lambda - \lambda_h, \rho_u \right\rangle + \frac{1}{2} \left\langle u - u_h, \rho_{\lambda} \right\rangle + R_h^{(3)},]

where [image: u - u_h] is the discretisation error in the forward
solution, [image: \lambda - \lambda_h] is the discretisation error in
the adjoint solution, [image: \rho_u] is the forward residual,
[image: \rho_{\lambda}] is the adjoint residual, and [image: R_h^{(3)}]
is a remainder term which is cubic in the discretisation errors
[image: u - u_h] and [image: \lambda - \lambda_h].

In practice, [image: u - u_h] is estimated by approximating [image: u]
with an extrapolation of [image: u_h] into a higher-order function
space (and similarly for [image: \lambda]), and the expression for
[image: J(u) - J(u_h)] is broken up into a sum of element-level error
indicators that are used to decide which elements should be refined
in an adaptive algorithm. For a discussion of how to implement
goal-based adaptivity in a general way in the FEniCS framework, see
the work of Rognes and Logg [5M-RL10].

The structure of the error estimator

Notice that the error estimator has a very particular structure: it
is the average of the inner product of the adjoint solution error
with the forward residual, and the forward solution error with the
adjoint residual. As many early results in the field only employed
the first term in the error estimator, the approach became known as
the “dual-weighted residual” approach (the term “dual” is commonly
used to refer to the adjoint in this branch of the literature).

If the averaging is not performed, and only the first term of the
error estimator is included, the remainder term is quadratic in
the forward and adjoint discretisation errors, not cubic.

The works of Rannacher and co-workers give many examples where a
computation that employs goal-based adaptivity is dramatically faster
at computing the functional to within a certain tolerance than the
corresponding fixed-mesh or heuristically-driven adaptivity. This
theorem raises the possibility of reliable automated computation:
not only can the discretisation of the differential equation be
automated with the FEniCS system, it can be automated to reliably and
efficiently compute desired quantities to within a specified
accuracy. The prospect of such a system would dramatically change the
social utility of computational science.

References

		[5M-BR03]		W. Bangerth and R. Rannacher. Adaptive finite element methods for differential equations. ETH Zürich Lectures in Mathematics. Birkhäuser, 2003.

		[5M-BMB+11]		L. Biegler, Y. Marzouk, G. Biros, O. Ghattas, M. Heinkenschloss, D. Keyes, B. Mallick, L. Tenorio, B. van Bloemen Waanders, and K. Willcox, editors. Large-Scale Inverse Problems and Quantification of Uncertainty. Wiley Series in Computational Statistics. Wiley, 2011.

		[5M-Bui06]		R. Buizza. The ECMWF ensemble prediction system. In T. Palmer, editor, Predictability of Weather and Climate, chapter 17, pages 459–488. Cambridge University Press, 2006. doi:10.1017/CBO9780511617652.018 [http://dx.doi.org/10.1017/CBO9780511617652.018].

		[5M-BHT03]		H. P. Bunge, C. R. Hagelberg, and B. J. Travis. Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophysical Journal International, 152(2):280–301, 2003. doi:10.1046/j.1365-246X.2003.01823.x [http://dx.doi.org/10.1046/j.1365-246X.2003.01823.x].

		[5M-Cac81]		D. G. Cacuci. Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach. Journal of Mathematical Physics, 22(12):2794–2802, 1981. doi:10.1063/1.525186 [http://dx.doi.org/10.1063/1.525186].

		[5M-HHG05]		P. Heimbach, C. Hill, and R. Giering. An efficient exact adjoint of the parallel MIT General Circulation Model, generated via automatic differentiation. Future Generation Computer Systems, 21(8):1356–1371, 2005. doi:10.1016/j.future.2004.11.010 [http://dx.doi.org/10.1016/j.future.2004.11.010].

		[5M-HL12]		P. Heimbach and M. Losch. Adjoint sensitivities of sub-ice shelf melt rates to ocean circulation under Pine Island Ice Shelf, West Antarctica. Annals of Glaciology, 53(60):59–69, 2012. doi:10.3189/2012/AoG60A025 [http://dx.doi.org/10.3189/2012/AoG60A025].

		[5M-HML+10]		P. Heimbach, D. Menemenlis, M. Losch, J. M. Campin, and C. Hill. On the formulation of sea-ice models. Part 2: lessons from multi-year adjoint sea-ice export sensitivities through the Canadian Arctic Archipelago. Ocean Modelling, 33(1-2):145–158, 2010. doi:10.1016/j.ocemod.2010.02.002 [http://dx.doi.org/10.1016/j.ocemod.2010.02.002].

		[5M-IF05]		P. J. Ioannou and B. F. Farrell. Application of generalised stability theory to deterministic and statistical prediction. In T. Palmer, editor, Predictability of Weather and Climate, chapter 5, pages 99–123. Cambridge University Press, 2005. doi:10.1017/CBO9780511617652.006 [http://dx.doi.org/10.1017/CBO9780511617652.006].

		[5M-Kal60]		R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1):35–45, 1960. doi:10.1115/1.3662552 [http://dx.doi.org/10.1115/1.3662552].

		[5M-Kal02]		E. Kalnay. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 2002.

		[5M-Lio71]		J. L. Lions. Optimal control of systems governed by partial differential equations. Springer-Verlag, 1971.

		[5M-Lor65]		E. N. Lorenz. A study of the predictability of a 28-variable atmospheric model. Tellus, 17(3):321–333, 1965. doi:10.1111/j.2153-3490.1965.tb01424.x [http://dx.doi.org/10.1111/j.2153-3490.1965.tb01424.x].

		[5M-PGBB98]		T. N. Palmer, R. Gelaro, J. Barkmeijer, and R. Buizza. Singular vectors, metrics, and adaptive observations. Journal of the Atmospheric Sciences, 55(4):633–653, 1998. doi:10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2 [http://dx.doi.org/10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2].

		[5M-RL10]		M. Rognes and A. Logg. Automated goal-oriented error control. I: stationary variational problems. Submitted to SIAM Journal on Scientific Computing, 2010.

		[5M-Sch07]		P. J. Schmid. Nonmodal stability theory. Annual Review of Fluid Mechanics, 39(1):129–162, 2007. doi:10.1146/annurev.fluid.38.050304.092139 [http://dx.doi.org/10.1146/annurev.fluid.38.050304.092139].

		[5M-Tar05]		A. Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, 2005.

		[5M-TB97]		L. N. Trefethen and D. Bau. Numerical Linear Algebra. Society for Industrial Mathematics, 1997.

		[5M-TE05]		L. N. Trefethen and M. Embree. Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, 2005.

		[5M-Wun96]		C. Wunsch. The ocean circulation inverse problem. Cambridge University Press, 1996. doi:10.1017/CBO9780511629570 [http://dx.doi.org/10.1017/CBO9780511629570].

		[5M-ZHMT12]		L. Zanna, P. Heimbach, A. M. Moore, and E. Tziperman. Upper-ocean singular vectors of the North Atlantic climate with implications for linear predictability and variability. Quarterly Journal of the Royal Meteorological Society, 138(663):500–513, 2012. doi:10.1002/qj.937 [http://dx.doi.org/10.1002/qj.937].

 © Copyright 2015, The dolfin-adjoint team.

documentation/maths/4-adjoint.html

 Navigation

 		
 index

 		
 modules |

 		 »

Properties of the adjoint equations

The adjoint equations have a reputation for being
counterintuitive. When told the adjoint equations run backwards in
time, this can strike the novice as bizarre. Therefore, it is worth
taking some time to explore these properties, until it is obvious
that the adjoint system should run backwards in time, and (more
generally) reverse the propagation of information. In fact, these
supposedly confusing properties are induced by nothing more exotic
than simple transposition.

The adjoint reverses the propagation of information

A simple advection example

Suppose we are are solving a one-dimensional advection-type equation
on a mesh with three nodes, at [image: x_0=0], [image: x_1=0.5], and
[image: x_2=1]. The velocity goes from left to right, and so we impose
an inflow boundary condition at the left-most node [image: x_0]. A
simple sketch of the linear system that might describe this
configuration could look as follows:

[image: \begin{pmatrix} 1 & 0 & 0 \\
 a & b & 0 \\
 c & d & e \end{pmatrix}
\begin{pmatrix} u_0 \\ u_1 \\ u_2 \end{pmatrix}
=
\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},]

where [image: a, b, c, d] and [image: e] are some coefficients of the
matrix arising from a discretisation of the equation. The equation for
[image: u_1] does not depend on [image: u_2], as information is flowing
from left to right. The structure of the matrix dictates the
propagation of information of the system: first [image: u_0] is set to
the boundary condition value, then [image: u_1] may be computed, and
then finally [image: u_2]. The lower-triangular nature of the matrix
reflects the rightward propagation of information.

Notice that [image: u_0] is prescribed: that is, the value of
[image: u_0] does not depend on the values at any other nodes; all
off-diagonal entries on the row for [image: u_0] are zero. Notice
further that the value [image: u_2] is diagnostic: no other nodes
depend on its value; all off-diagonal entries on its column are zero.

Now suppose that we take the adjoint of this system with respect to
some functional [image: J(u)]. The operator is linear (no entry in the
matrix depends on [image: u]), and so the adjoint of this system is
just its transpose:

[image: \begin{pmatrix} 1 & a & c \\
 0 & b & d \\
 0 & 0 & e \end{pmatrix}
\begin{pmatrix} \lambda_0 \\ \lambda_1 \\ \lambda_2 \end{pmatrix}
=
\begin{pmatrix} {\partial J}/{\partial u_0} \\ {\partial J}/{\partial u_1} \\ {\partial J}/{\partial u_2} \end{pmatrix},]

The adjoint of the advection equation

If the forward equation is [image: u \cdot \nabla T], where [image: u]
is the advecting velocity and [image: T] is the advected tracer, then
its corresponding adjoint term is [image: -u \cdot \nabla \lambda].
The adjoint advection equation is itself an advection equation, with
the reverse of the forward velocity.

where [image: \lambda] is the adjoint variable corresponding to
[image: u]. Observe that transposing the forward system yields an
upper-triangular adjoint system: the adjoint propagates information
from right to left, in the opposite sense to the propagation of the
forward system. To solve this system, one would first solve for
[image: \lambda_2], then compute [image: \lambda_1], and finally
[image: \lambda_0].

Further notice that [image: \lambda_2] is now prescribed: it can be
computed directly from the data, with no dependencies on the values of
other adjoint variables; all of the off-diagonal entries in its row
are zero. [image: \lambda_0] is now diagnostic: no other variables
depend on its value; all off-diagonal entries in its column are zero.

Prescribed and diagnostic variables

This is a general pattern. Variables that are prescribed in the
forward model are diagnostic in the adjoint; variables that are
diagnostic in the forward model are prescribed in the adjoint.

A time-dependent example

Now consider a time-dependent system. For convenience, we assume the
system is linear, but the result holds true in exactly the same way
for nonlinear systems. We start with an initial condition [image: f_0]
for [image: u_0] (where the subscript denotes the timestep, rather than
the node). We then use this information to compute the value at the
next timestep, [image: u_1]. This information is then used to compute
[image: u_2], and so on. This temporal structure can be represented as
a block-structured matrix:

[image: \begin{pmatrix} I & 0 & 0 \\
 A & B & 0 \\
 C & D & E \end{pmatrix}
\begin{pmatrix} u_0 \\ u_1 \\ u_2 \end{pmatrix}
=
\begin{pmatrix} f_0 \\ f_1 \\ f_2 \end{pmatrix},]

where [image: I] is the identity operator, [image: A, B, C, D] and
[image: E] are some operators arising from the discretisation of the
time-dependent system, [image: f_0] is the initial condition for
[image: u_0], and [image: f_n] is the source term for the equation for
[image: u_n].

Again, the temporal propagation of information forward in time is
reflected in the lower-triangular structure of the matrix. This
reflects the fact that it is possible to timestep the system, and
solve for parts of the solution [image: u] at a time. If the discrete
operator were not lower-triangular, all timesteps of the solution
[image: u] would be coupled, and would have to be solved for together.

Notice again that the value at the initial time [image: u_0] is
prescribed, and the value at the final time [image: u_2] is diagnostic.

Now let us take the adjoint of this system. Since the operator has
been assumed to be linear, the adjoint of this system is given by the
block-structured matrix

[image: \begin{pmatrix} I & A^* & C^* \\
 0 & B^* & D^* \\
 0 & 0 & E^* \end{pmatrix}
\begin{pmatrix} \lambda_0 \\ \lambda_1 \\ \lambda_2 \end{pmatrix}
=
\begin{pmatrix} {\partial J}/{\partial u_0} \\ {\partial J}/{\partial u_1} \\ {\partial J}/{\partial u_2} \end{pmatrix},]

where [image: \lambda] is the adjoint variable corresponding to
[image: u]. Observe that the adjoint system is now upper-triangular:
the adjoint propagates information from later times to earlier times,
in the opposite sense to the propagation of the forward system. To
solve this system, one would first solve for [image: \lambda_2], then
compute [image: \lambda_1], and finally [image: \lambda_0].

Notice once more that the prescribed-diagnostic relationship
applies. In the forward model, the initial condition is prescribed,
and the solution at the final time is diagnostic. In the adjoint
model, the solution at the final time is prescribed (a so-called
terminal condition, rather than an initial condition), and the
solution at the beginning of time is diagnostic. This is why when the
adjoint of a continuous system is derived, the formulation always
includes the specification of a terminal condition on the adjoint
system.

The adjoint equation is linear

As noted in the previous section, the operator of the tangent linear
system is the linearisation of the operator about the solution
[image: u]; therefore, the adjoint system is always linear in
[image: \lambda].

Unconverged nonlinear iterations

Note that the nonlinear iteration has to converge for the
linearisation about the solution at that timestep to be valid. If
the model does not drive the nonlinear problem to convergence
(perhaps it only does a fixed number of Picard iterations, say),
then it is not consistent to see the nonlinear solve as one
equation, and to trade it for a linear solve in the adjoint. In
other words, if the nonlinear solve does not converge, then each
iteration of the unconverged nonlinear solve induces a linear
solve in the adjoint system, and so the adjoint will take
approximately the same runtime as the forward model.

Converging your nonlinear problem is not only more accurate, it
makes the adjoint relatively much more efficient!

This has two major effects. The first is a beneficial effect on the
computation time of the adjoint run: while the forward model may be
nonlinear, the adjoint is always linear, and so it can be much
cheaper to solve than the forward model. For example, if the forward
model employs a Newton solver for the nonlinear problem that uses on
average [image: 5] linear solves to converge to machine precision, then
a rough estimate for the adjoint computation is that it will take
[image: 1/5] the runtime of the forward model.

The second major effect is on the storage requirements of the adjoint
run. Unfortunately, this effect is not beneficial. The adjoint
operator is a linearisation of the nonlinear operator about the
solution [image: u]: therefore, if the forward model is nonlinear, the
forward solution must be available to assemble the adjoint system. If
the forward model is steady, this is not a significant difficulty:
however, if the forward model is time-dependent, the entire solution
trajectory through time must be available.

The obvious approach to making the entire solution trajectory
available is to store the value of every variable solved for. This
approach is the simplest, and it is the most efficient option if
enough storage is available on the machine to store the entire
solution at once. However, for long simulations with many degrees of
freedom, it is usually impractical to store the entire solution
trajectory, and therefore some alternative approach must be
implemented.

The space cost of storing all variables is linear in time (double the
timesteps, double the storage) and the time cost is constant (no extra
recomputation is required). The opposite strategy, of storing nothing
and recomputing everything when it becomes necessary, is quadratic in
time and constant in space. A checkpointing algorithm attempts to
strike a balance between these two extremes to control both the
spatial requirements (storage space) and temporal requirements
(recomputation).

Checkpointing in dolfin-adjoint

Libadjoint, the library that is the backbone of dolfin-adjoint,
embeds the revolve algorithm of Griewank and Walther. Activating
checkpointing is a simple matter of adding two function calls. For
more details, see the manual section on checkpointing.

Checkpointing algorithms have been well studied in the literature,
usually in the context of algorithmic differentiation
[4M-Gri92] [4M-HS05] [4M-SW10]
[4M-WMI09]. There are two categories of checkpointing
algorithms: offline algorithms and online algorithms. In the
offline case, the number of timesteps is known in advance, and so the
optimal distribution of checkpoints may be computed a priori (and
hence “offline”), while in the online case, the number of timesteps is
not known in advance, and so the distribution of checkpoints must be
computed during the run itself. Of particular note is the revolve
software of Griewank and Walther, which achieves logarithmic growth of
both space and time [4M-GW00]. This algorithm is
provably optimal for the offline case [4M-GPRS96].

Summary

Now that the adjoint and tangent linear equations have been
introduced, and some of their properties discussed, let us see in more
detail the applications of these concepts. This is discussed in
the next section.

References

		[4M-Gri92]		A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. Optimization Methods and Software, 1(1):35–54, 1992. doi:10.1080/10556789208805505 [http://dx.doi.org/10.1080/10556789208805505].

		[4M-GW00]		A. Griewank and A. Walther. Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Transactions on Mathematical Software, 26(1):19–45, 2000. doi:10.1145/347837.347846 [http://dx.doi.org/10.1145/347837.347846].

		[4M-GPRS96]		J. Grimm, L. Pottier, and N. Rostaing-Schmidt. Optimal time and minimum space-time product for reversing a certain class of programs. In M. Berz, C. H. Bischof, G. F. Corliss, and A. Griewank, editors, Computational Differentiation: Techniques, Applications, and Tools, 95–106. Philadelphia, PA, 1996. SIAM.

		[4M-HS05]		M. Hinze and J. Sternberg. A-revolve: an adaptive memory-reduced procedure for calculating adjoints; with an application to computing adjoints of the instationary Navier–Stokes system. Optimization Methods and Software, 20(6):645–663, 2005. doi:10.1080/10556780410001684158 [http://dx.doi.org/10.1080/10556780410001684158].

		[4M-SW10]		P. Stumm and A. Walther. New algorithms for optimal online checkpointing. SIAM Journal on Scientific Computing, 32(2):836–854, 2010. doi:10.1137/080742439 [http://dx.doi.org/10.1137/080742439].

		[4M-WMI09]		Q. Wang, P. Moin, and G. Iaccarino. Minimal repetition dynamic checkpointing algorithm for unsteady adjoint calculation. SIAM Journal on Scientific Computing, 31(4):2549–2567, 2009. doi:10.1137/080727890 [http://dx.doi.org/10.1137/080727890].

 © Copyright 2015, The dolfin-adjoint team.

documentation/maths/3-gradients.html

 Navigation

 		
 index

 		
 modules |

 		 »

Differentiating functionals

Finite differencing

The definition of the derivative
[image: \mathrm{d}\widehat{J}/\mathrm{d}m] is

[image: \frac{\mathrm{d}\widehat{J}}{\mathrm{d}m_i} = \lim_{h \rightarrow 0} \ \frac{\widehat{J}(m + he_i) - \widehat{J}(m)}{h}]

where [image: e_i] is the vector with 0 in all entries except for 1 in
the [image: i^{\mathrm{th}}] entry. Each component of the gradient
vector [image: \mathrm{d}\widehat{J}/\mathrm{d}m] is the derivative of
the functional [image: \widehat{J}] with respect to the corresponding
component of [image: m]. A simple idea for approximating the derivative
is to compute each component of the gradient as

[image: \frac{\mathrm{d}\widehat{J}}{\mathrm{d}m_i} \approx \frac{\widehat{J}(m + he_i) - \widehat{J}(m)}{h}]

for some small choice of [image: h]. The advantage of this approach is
that it is very straightforward: it still only requires a black-box
evaluator for [image: \widehat{J}], and the approximation of the
gradients can be done entirely within the optimisation algorithm.

When finite differencing is useful

In the PDE-constrained optimisation case, finite differencing isn’t
very useful for computing the gradient of the functional. However,
it is very useful for rigorously verifying gradients computed
with another approach. For more details, see the section of the
dolfin-adjoint documentation on verifying functional gradients.

However, this approach suffers from several serious drawbacks. One
problem is that it is not obvious how to choose an appropriate value
for [image: h]: choose [image: h] too large, and the finite difference
will not approximate the limit value; choose [image: h] too small, and
numerical precision will destroy the accuracy of the approximation. A
more serious problem, however, is that this approximation requires one
functional evaluation for each degree of freedom in the parameter
space. When each functional evaluation requires an expensive PDE
solve, this approach quickly becomes impractical, and a more
intelligent algorithm is required.

The tangent linear approach

Recall that [image: \widehat{J}(m)] is the functional considered as a
pure function of [image: m]:

[image: \widehat{J}(m) = J(u(m), m).]

Let us apply the chain rule to [image: \widehat{J}(m)]:

[image: \underset{\raisebox{1.0ex}[15pt][0pt]{\scriptsize{$1 \times M$}}}{\frac{\mathrm{d}\widehat{J}}{\mathrm{d}m}} =
\underset{\raisebox{1.0ex}[15pt][0pt]{\scriptsize{$1 \times U$}}}{\frac{\partial J}{\partial u}}
\underset{\raisebox{1.0ex}[15pt][0pt]{\scriptsize{$U \times M$}}}{\frac{\mathrm{d}u}{\mathrm{d}m}} +
\underset{\raisebox{1.0ex}[15pt][0pt]{\scriptsize{$1 \times M$}}}{\frac{\partial J}{\partial m}}.]

Let us inspect each term of this relationship, and build up some
intuition about each. [image: {\partial J}/{\partial m}] and
[image: {\partial J}/{\partial u}] are typically very straightforward
to compute: [image: J] is usually a simple closed-form expression in
terms of [image: u] and [image: m], and so their differentiation by hand
is generally trivial. Both of these quantities are vectors, with
dimensions of the parameter space and solution space respectively. By
contrast, the solution Jacobian [image: {\mathrm{d}u}/{\mathrm{d}m}] is
rather difficult to compute. This object is a massive dense matrix,
of dimensions (solution space [image: \times] parameter space), and as
such it is unlikely to fit in memory. However, let us temporarily
suppose that the number of parameters is small, and that we would like
to compute [image: {\mathrm{d}\widehat{J}}/{\mathrm{d}m}] using the
relationship above.

With the PDE [image: F(u, m) = 0], we have an relationship for
[image: u] as an implicit function of [image: m]. If we take the total
derivative of this equation with respect to [image: m], we will have a
relationship for the solution Jacobian
[image: {\mathrm{d}u}/{\mathrm{d}m}]:

[image: & \frac{\mathrm{d}}{\mathrm{d}m} F(u, m) = \frac{\mathrm{d}}{\mathrm{d}m} 0 \\
\implies & \frac{\partial F(u, m)}{\partial u} \frac{\mathrm{d}u}{\mathrm{d}m} + \frac{\partial F(u, m)}{\partial m} = 0 \\
\implies &
\underset{\raisebox{1.0ex}[30pt][0pt]{\scriptsize{$U \times U$}}}{\frac{\partial F(u, m)}{\partial u}}
\underset{\raisebox{1.0ex}[15pt][0pt]{\scriptsize{$U \times M$}}}{\frac{\mathrm{d}u}{\mathrm{d}m}} =
\underset{\raisebox{1.0ex}[30pt][0pt]{\scriptsize{$U \times M$}}}{-\frac{\partial F(u, m)}{\partial m}}.]

The tangent linear system

The tangent linear system is the same idea as the forward mode of
algorithmic or automatic differentiation.

This last relationship is the tangent linear equation (or tangent
linear system) associated with the PDE [image: F(u, m) = 0]. Let us
carefully consider each term in the tangent linear system, and build
up some intuition about each.

[image: {\mathrm{d}u}/{\mathrm{d}m}] is the solution Jacobian again,
with which we can compute the functional gradient
[image: {\mathrm{d}\widehat{J}}/{\mathrm{d}m}]. It is the prognostic
variable of this equation, the unknown quantity in the tangent linear
system.

Now consider [image: {\partial F(u, m)}/{\partial u}]. Since [image: F]
is a vector expression, its derivative with respect to [image: u]
[image: m] is an operator (a matrix); this operator acts on the
solution Jacobian, and therefore must be inverted or
solved. [image: F(u, m)] may have been nonlinear in [image: u], but
[image: {\partial F(u, m)}/{\partial u}] is always linear. In other
words, [image: {\partial F(u, m)}/{\partial u}] is the linearisation
of the equation operator, linearised about a particular solution
[image: u]. If [image: F(u, m)] happened to be linear in the first
place, and so [image: F(u, m) \equiv A(m)u - b(m)] for some operator
[image: A(m)], then [image: {\partial F(u, m)}/{\partial u}] is just the
operator [image: A(m)] back again.

Finally, consider the term [image: {\partial F(u, m)}/{\partial
m}]. Like [image: {\mathrm{d}u}/{\mathrm{d}m}], this is a matrix of
dimension (solution space [image: \times] parameter space). This term
acts as the source term for the tangent linear system; each column of
[image: {\partial F(u, m)}/{\partial m}] provides the source term for
the derivative of [image: u] with respect to one scalar entry in the
parameter vector.

So, when is solving the tangent linear system a sensible approach?
To answer this question, notice that we had to specify some parameter
[image: m] to construct the tangent linear system, but that the
functional [image: J] does not appear at all. In other words, for a
given parameter (input), the tangent linear solution can be used to
easily compute the gradient of any functional. This means that
solving the tangent linear system makes sense when there are a small
number of parameters (inputs), and a large number of functionals of
interest (outputs). However, this is generally not the case in
PDE-constrained optimisation. Is there a better way?

The adjoint approach

Let us rephrase the tangent linear approach to computing the
gradient. We start by fixing our choice of parameter [image: m], and
then solve for the solution Jacobian
[image: {\mathrm{d}u}/{\mathrm{d}m}] associated with that choice of
[image: m]. With this quantity in hand, we take its inner product with
a source term [image: {\partial J}/{\partial u}] particular to the
functional [image: J], and can then compute the gradient
[image: {\mathrm{d}\widehat{J}}/{\mathrm{d}m}].

Notice that we first fixed the parameter [image: m], (the “denominator”
of the gradient [image: {\mathrm{d}\widehat{J}}/{\mathrm{d}m}]) and
then chose which functional we wished to compute the gradient of
(the “numerator” of the gradient). Is there a way where we could do
the opposite: first fix the functional [image: J], and then choose
which parameter to take the gradient with respect to? The answer is
yes, and that approach is referred to as the adjoint approach.

Suppose the tangent linear system is invertible. Then we can rewrite
the solution Jacobian as

[image: \frac{\mathrm{d}u}{\mathrm{d}m} = - \left(\frac{\partial F(u, m)}{\partial u}\right)^{-1}
\frac{\partial F(u, m)}{\partial m}.]

We usually could not compute this expression (computing the inverse of
the operator [image: {\partial F(u, m)}/{\partial u}] is prohibitive),
but we can still use it and reason about it. Let us substitute this
expression for the solution Jacobian into the expression for the
gradient of [image: \widehat{J}]:

[image: & \frac{\mathrm{d}\widehat{J}}{\mathrm{d}m} = \frac{\partial J}{\partial u} \frac{\mathrm{d}u}{\mathrm{d}m} + \frac{\partial J}{\partial m}.\\
\implies & \frac{\mathrm{d}\widehat{J}}{\mathrm{d}m} = - \frac{\partial J}{\partial u} \left(\frac{\partial F(u, m)}{\partial u}\right)^{-1} \frac{\partial F(u, m)}{\partial m} + \frac{\partial J}{\partial m}.]

The adjoint of a matrix

The notation [image: A^*] means to take the transpose of [image: A],
[image: A^T], and take the complex conjugate of each entry. If the
matrix [image: A] is composed entirely of real numbers, then the
adjoint is just the transpose. Other words for the adjoint are the
Hermitian and the conjugate transpose.

Now let’s take the adjoint (Hermitian transpose) of the above equation:

[image: & \underset{M \times 1}{\frac{\mathrm{d}\widehat{J}}{\mathrm{d}m}^*} =
 -\underset{M \times U}{\frac{\partial F}{\partial m}^*}
 \underset{U \times U}{\frac{\partial F}{\partial u}^{-*}}
 \underset{U \times 1}{\frac{\partial J}{\partial u}^{*}}
 +
 \underset{M \times 1}{\frac{\partial J}{\partial m}^*}]

Let us gather the solution of the inverse Jacobian acting on a vector, and define it
to be a new variable:

[image: & \lambda = \left(\frac{\partial F(u, m)}{\partial u}\right)^{-*} \frac{\partial J}{\partial u}^* \\
\implies & \left(\frac{\partial F(u, m)}{\partial u}\right)^{*} \lambda = \frac{\partial J}{\partial u}^*.]

The adjoint system

The adjoint system is the same idea as the reverse mode of
algorithmic or automatic differentiation.

Another word for “adjoint” used in the literature is “dual”: people
refer to the dual system, the dual solution, etc.

This relationship is the adjoint equation (or adjoint system)
associated with the PDE [image: F(u, m) = 0]. Again, let us carefully
consider each term in the adjoint equation and build up some intuition
about each.

[image: \lambda] is the adjoint variable associated with
[image: u]. Each component of the solution [image: u] will have a
corresponding adjoint variable. For example, if [image: F] is the
Navier-Stokes equations, and [image: u] is the tuple of velocity and
pressure, then [image: \lambda] is the tuple of adjoint velocity and
adjoint pressure. Similarly, if the problem is time-dependent, the
adjoint is also time-dependent, with each variable through time having
a corresponding adjoint value.

[image: \left({\partial F(u, m)}/{\partial u}\right)^{*}] is the
adjoint of the tangent linear operator. Commonly, this is referred
as the “adjoint operator”. By taking the transpose, we reverse the
flow of information in the equation system. For example, if a tracer
is advected downstream (and so information about upstream conditions
is advected with it), the adjoint PDE advects information in the
reverse sense, i.e. upstream. This extends to the temporal propagation
of information: if [image: F(u, m)] is a time-dependent PDE (and so
propagates information from earlier times to later times), the adjoint
PDE runs backwards in time (propagates information from later times
to earlier times). This property will be examined in more detail in
the next section.

[image: {\partial J}/{\partial u}] is the source term for the adjoint
equation. It is this source term that makes an adjoint solution
specific to a particular functional. Just as one cannot speak of the
tangent linear solution without referring to a particular choice of
parameter, one cannot speak of the adjoint solution without referring
to a specific choice of functional.

As the tangent linear operator is always linear, the adjoint is linear
in [image: u] also, and so the adjoint equation is always linear in
[image: \lambda]. This property will also be examined in more detail in
the next section.

So, to compute the functional gradient
[image: {\mathrm{d}\widehat{J}}/{\mathrm{d}m}], we first solve the
adjoint equation for [image: \lambda] (fixing the “nominator” of the
gradient, as the adjoint is specific to the functional), and then take
its inner product with respect to [image: -{\partial F(u, m)}/{\partial
m}] to compute the gradient with respect to a particular parameter
[image: m] (fixing the “denominator” of the gradient). This is
precisely the dual approach to that of computing
[image: {\mathrm{d}\widehat{J}}/{\mathrm{d}m}] using the tangent linear
approach, and has precisely the dual scaling: for a given functional
(output), the adjoint solution can be used to easily compute the
gradient with respect to any parameter. Therefore, solving the
adjoint system is extremely efficient when there are a small number
of functionals (outputs), and a large number of parameters
(inputs). This is precisely the case we are considering in
PDE-constrained optimisation: there is one functional (output) of
interest, but many parameters.

So, with some knowledge of the chain rule and some transposition,
we have devised an algorithm for computing the gradient
[image: {\mathrm{d}\widehat{J}}/{\mathrm{d}m}] that is extremely
efficient for our case where we have many parameters and only one
functional.

Summary

A sketch of the solution approach for the PDE-constrained optimisation
problem is therefore:

		Start with some initial guess for the parameters [image: m].

		Compute the functional [image: \widehat{J}(m)] (using the forward model) and its gradient (using the adjoint model).

		Pass these values to an optimisation algorithm.
This algorithm returns a new point in parameter space with a better functional value.

		If the gradient is zero, or if the maximum number of iterations has been reached, terminate. Otherwise, go to step 2.

Of course, PDE-constrained optimisation is a much richer field than
the simple sketch above would suggest. Much work is focussed on
exploiting particular properties of the equations or the functional,
ensuring the gradient is represented with the correct Riesz representer,
or imposing additional constraints on the parameter space, or
exploiting advanced forward modelling concepts such as error
estimation, goal-based adaptivity and reduced-order
modelling. Nevertheless, although complications proliferate, the above
algorithm captures the key idea of many approaches used for solving
problems of enormous importance.

With the adjoint and tangent linear equations now introduced, let us
examine them more thoroughly, in the next section.

References

 © Copyright 2015, The dolfin-adjoint team.

documentation/maths/1-foreword.html

 Navigation

 		
 index

 		
 modules |

 		 »

Foreword

Written by Patrick E. Farrell

Why care about adjoints?

Far too often, maths books launch into their subject without
explaining to the novice reader why he or she should care about it in
the first place. So, before diving into the details, let’s take a few
minutes to motivate why adjoint techniques were invented.

Suppose an aeronautical engineer wishes to design a wing. The wing is
parametrised by a vector [image: m]; for example, suppose each entry of
[image: m] is the coefficient of a Bézier curve. For any potential wing
design [image: m], the Euler equations can be solved, and the
lift-to-drag ratio [image: J] of the design computed. With an adjoint,
the engineer can do far more: the adjoint computes the derivative of
the drag with respect to the design parameters. This can be used to
guide a human designer, or can be passed to an automated optimisation
algorithm to automatically compute an optimal
shape. [1M-Jam88] [1M-GP00]. In the literature, this
concept is referred to as adjoint design optimisation.

Suppose a meteorologist wishes to improve a forecast by constraining
the weather model to match atmospheric observations. The state of the
atmosphere at the initial time is partially known (from weather
stations), but in order to initialise the model an initial condition
for the whole world is required. For any guess of the (unknown)
initial state of the atmosphere [image: m], the Navier-Stokes and
related equations can be solved, and the weighted misfit [image: J]
between the observed values and the simulation results can be
computed. With an adjoint, the meteorologist can systematically
update their guess for the initial state of the atmosphere to match
the observations [1M-LDT86] [1M-TC87]. In the
literature, this concept is referred to as variational data
assimilation, 3D-Var and 4D-Var.

Suppose an oceanographer wishes to understand the impact of bottom
topography on transport through the Drake passage. Bottom topography
(the shape of the sea floor) is quite poorly known; many areas of the
world are sparsely observed, and observations from over a century ago
are still used in some places. The bottom topography is represented as
a scalar field [image: m], the Navier-Stokes and related equations are
solved, and the average net transport through the Drake passage
[image: J] computed. With an adjoint, the oceanographer can see where
the transport is most sensitive to the topography, and so quantify
where the uncertainty matters most [1M-LH07]. In the
literature, this concept is referred to as sensitivity analysis.

Suppose a nuclear engineer working for a government regulator wishes
to examine a proposed new nuclear reactor design. To do this, a
forward model of the Boltzmann transport equations will be used to
simulate the proposed design and verify its safety. However, all
simulations inherently come with discretisation errors, and unless
those errors are quantified, the simulations cannot be relied upon to
make decisions upon which millions of lives and billions of pounds
depend. With an adjoint, the engineer can quantify the impact of
discretisation errors on the criticality rate, and decide to what
extent the simulations may be trusted [1M-BR01]. In the
literature, this concept is referred to as goal-based error
estimation, or goal-based adaptivity.

Suppose a mathematician wishes to understand the stability of some
physical system. The traditional approach to this problem is to
linearise the operator and investigate its eigenvalues, which
determine the long-term behaviour of the system (as [image: t
\rightarrow \infty]). However, systems that are eigenvalue-stable can
exhibit unexpected transient growth of small perturbations, which in
turn can cause the system to become unstable (through nonlinear
effects) [1M-TTRD93]. By computing the singular value
decomposition of the tangent linear model, the transient growth of
the system to such perturbations can be quantified, and the optimally
growing perturbations identified [1M-FI96]. The
computation of the singular value decomposition in turn requires the
adjoint. In the literature, this approach is referred to as
generalised stability theory.

As you can see, adjoints show up in many applications, and in many
computational techniques. One of the reasons why adjoints have a
reputation for being difficult is because their discussion is
performed in many different areas of science, usually with their own
specialised terminology. Reading the literature, there are almost as
many ways to approach the topic as there are practitioners! With this
introduction, I hope to strike to the heart of the matter, and clear
some of the confusion with the minimum of application– or
technique–specific lingo.

A note on the exposition

I have chosen to motivate adjoints via a discussion of
PDE-constrained optimisation for two reasons. The first is that this
approach encapsulates many important applications of adjoints in a
general way, and so the reader will be well-equipped to understand
much adjoint-related mathematics in the literature. The second is the
elegance of the result: most people are amazed when they first learn
that it is possible to compute the gradient of a functional
[image: \widehat{J}(m)] in a cost independent of the number of
parameters [image: \textrm{dim}(m)]! The topic of adjoints is
intriguing, counterintuitive and beautiful; any exposition should try
to live up to that.

The focus of the exposition will be on getting the core ideas across,
and for this reason the discussion will sometimes neglect
technicalities. For example, I will implicitly assume that all
problems are well-posed, that all necessary derivatives exist and are
sufficiently smooth, etc. Occasionally, to build intuition, I will
refer to objects as matrices and vectors, although the exposition
holds in exactly the same way for their analogues in functional
analysis. For an advanced in-depth technical treatment of
PDE-constrained optimisation, see the excellent book of Hinze et
al. [1E-HPUU09].

Notation

The notation is mostly inspired by Gunzburger [1M-Gun03].

		Symbol
		Meaning

		[image: m]
		the vector of parameters

		[image: u]
		the solution of the PDE

		[image: F(u, m)]
		the PDE relating [image: u] and [image: m]: [image: F \equiv 0]

		[image: J(u, m)]
		a functional of interest

		[image: \widehat{J}(m)]
		the functional considered as a pure function of [image: m]: [image: \widehat{J}(m) = J(u(m), m)]

In the next section, we introduce the
PDE-constrained optimisation problem and give a broad overview of how
it may be tackled.

References

		[1M-BR01]		R. Becker and R. Rannacher. An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica, 10:1–102, 2001. doi:10.1017/S0962492901000010 [http://dx.doi.org/10.1017/S0962492901000010].

		[1M-FI96]		B. F. Farrell and P. J. Ioannou. Generalized stability theory. Part I: Autonomous operators. Journal of the Atmospheric Sciences, 53(14):2025–2040, 1996. doi:10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2 [http://dx.doi.org/10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2].

		[1M-GP00]		M. B. Giles and N. A. Pierce. An introduction to the adjoint approach to design. Flow, Turbulence and Combustion, 65(3-4):393–415, 2000. doi:10.1023/A:1011430410075 [http://dx.doi.org/10.1023/A:1011430410075].

		[1M-Gun03]		M. D. Gunzburger. Perspectives in Flow Control and Optimization. Advances in Design and Control. SIAM, 2003.

		[1E-HPUU09]		M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE constraints. volume 23 of Mathematical Modelling: Theory and Applications. Springer, 2009.

		[1M-Jam88]		A. Jameson. Aerodynamic design via control theory. Journal of Scientific Computing, 3(3):233–260, 1988. doi:10.1007/BF01061285 [http://dx.doi.org/10.1007/BF01061285].

		[1M-LDT86]		F.-X. Le Dimet and O. Talagrand. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A, 38A(2):97–110, 1986. doi:10.1111/j.1600-0870.1986.tb00459.x [http://dx.doi.org/10.1111/j.1600-0870.1986.tb00459.x].

		[1M-LH07]		M. Losch and P. Heimbach. Adjoint sensitivity of an ocean general circulation model to bottom topography. Journal of Physical Oceanography, 37(2):377–393, 2007. doi:10.1175/JPO3017.1 [http://dx.doi.org/10.1175/JPO3017.1].

		[1M-TC87]		O. Talagrand and P. Courtier. Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quarterly Journal of the Royal Meteorological Society, 113(478):1311–1328, 1987. doi:10.1002/qj.49711347812 [http://dx.doi.org/10.1002/qj.49711347812].

		[1M-TTRD93]		L. N. Trefethen, A. E. Trefethen, S. C. Reddy, and T. A. Driscoll. Hydrodynamic stability without eigenvalues. Science, 261(5121):578–584, 1993. doi:10.1126/science.261.5121.578 [http://dx.doi.org/10.1126/science.261.5121.578].

 © Copyright 2015, The dolfin-adjoint team.

_images/math/d34f35269706dbf1f0c4c6d1cc9cfff0c9df01fa.png
(Vy, Vv —y))a =z (f+u,v—yla Vv =0,v=0o0ndQ,
y=0,
=0 ondQ,

_images/math/a667ee15db3e72ffa17c3922338f303c314fb046.png

documentation/maths/index.html

 Navigation

 		
 index

 		
 modules |

 		 »

Mathematical background: adjoints and their applications

Section author: Patrick E. Farrell <patrick.farrell@maths.ox.ac.uk>

Contacting the author

If you find this discussion useful, or have any comments on it, please
send me an email!

Sections

		Foreword
		Why care about adjoints?

		A note on the exposition

		Notation

		PDE-constrained optimisation
		Problem statement

		Solution approaches

		Differentiating functionals
		Finite differencing

		The tangent linear approach

		The adjoint approach

		Summary

		Properties of the adjoint equations
		The adjoint reverses the propagation of information
		A simple advection example

		A time-dependent example

		The adjoint equation is linear
		Summary

		Applications of adjoints
		PDE-constrained optimisation

		Sensitivity analysis

		Data assimilation

		Inverse problems

		Generalised stability theory

		Error estimation

Appendices

		Generalised stability theory
		Introduction

		The singular value decomposition of the propagator

		Computing the propagator

		Singular value computation

 © Copyright 2015, The dolfin-adjoint team.

documentation/maths/2-problem.html

 Navigation

 		
 index

 		
 modules |

 		 »

PDE-constrained optimisation

Problem statement

Let [image: m] be a vector of some parameters. For example, [image: m]
might be the values of an initial condition, or of a source term, or
of a boundary condition.

Feasibility

In optimisation, to say that a point [image: m] in parameter space is
feasible means that it satisfies all of the constraints on the
choice of parameters. To say that the pair [image: (u, m)] is
feasible means that [image: m] is feasible, and that [image: u]
satisfies the relationship [image: F(u, m) = 0].

Let [image: F(u, m) \equiv 0] be a (system of) partial differential
equations that describe the physics of the problem of
interest. [image: F] is a vector expression (one entry for each
equation), with all terms in the equation gathered on to the left-hand
side. The idea is that, for any (feasible) choice of [image: m \in \mathbb{R}^M], the
PDE [image: F] can be solved to yield the solution [image: u \in \mathbb{R}^U]. In other
words, the solution [image: u] can be thought of as an implicit
function [image: u(m)] of the parameters [image: m], related through
the PDE [image: F(u, m) \equiv 0]. We never have an explicit expression
for [image: u] in terms of [image: m], but as we shall see, we can still
discuss its derivative [image: {\mathrm{d}u}/{\mathrm{d}m}].

If the problem [image: F(u, m)] is time-dependent, this abstraction
still holds. In this case, think of [image: u] as a vector containing
all time values of all prognostic variables. In the discrete case,
[image: u] is a vector with the value of the solution at the first
timestep, then the value at the second timestep, and so on, for
however many timesteps are required.

Finally, let [image: J(u, m)] be a functional of interest. [image: J]
represents the quantity to be optimised: for example, the quality of a
design is to be maximised, or the misfit between observations and
computations is to be minimised.

A general statement of the PDE-constrained optimisation problem is
then given as follows: find the [image: m] that minimises [image: J(u,
m)], subject to the constraint that [image: F(u, m) = 0]. For
simplicity, we suppose that there are no further constraints on the
choice of [image: m]; there are well-known techniques for handling such
situations. If [image: J] is to be maximised instead of minimised, just
consider minimising the functional [image: -J].

Throughout this introduction, we shall implicitly consider the case
where the dimension of the parameter space is very large. This means
that we shall seek out algorithms that scale well with the dimension
of the parameter space, and discard those that do not. We shall also
generally assume that solving the PDE is very expensive: therefore,
we will seek out algorithms which attempt to minimise the number of
PDE solutions required. This combination of events – a large
parameter space, and an expensive PDE – is the most interesting,
common, practical and difficult situation, and therefore it is the one
we shall attempt to tackle head-on.

Functional

A functional is a function that acts on some vector space, and
returns a single scalar number.

Solution approaches

There are many ways to approach solving this problem. The approach
that we shall take here is to apply a gradient-based optimisation
algorithm, as these techniques scale to large numbers of parameters
and to complex, nonlinear, time-dependent PDE constraints.

To apply an optimisation algorithm, we will convert the
PDE-constrained optimisation problem into an unconstrained
optimisation problem. Let [image: \widehat{J}(m) \equiv J(u(m), m)] be
the functional considered as a pure function of the parameters
[image: m]: that is, to compute [image: \widehat{J}(m)], solve the PDE
[image: F(u, m) = 0] for [image: u], and then evaluate [image: J(u,
m)]. The functional [image: \widehat{J}] has the PDE constraint “built
in”: by considering [image: \widehat{J}] instead of [image: J], we
convert the constrained optimisation problem to a simpler,
unconstrained one. The problem is now posed as: find the [image: m]
that minimises [image: \widehat{J}(m)].

Given some software that solves the PDE [image: F(u, m) = 0], we have a
black box for computing the value of the functional
[image: \widehat{J}], given some argument [image: m]. If we can only
evaluate the functional, and have no information about its
derivatives, then we are forced to use a gradient-free optimisation
algorithm such as a genetic algorithm. The drawback of such methods is
that they typically scale very poorly with the dimension of the
parameter space: even for a moderate sized parameter space, a
gradient-free algorithm will typically take hundreds or thousands of
functional evaluations before terminating. Since each functional
evaluation involves a costly PDE solve, such an approach quickly
becomes impractical.

Other approaches

No discussion of PDE-constrained optimisation would be complete
without mentioning the “oneshot” approach. Instead of starting with
some initial guess [image: m] and applying an optimisation algorithm,
the oneshot approach derives auxiliary equations that provide
necessary and sufficient conditions for finding an optimum. These
coupled equations are then solved, almost always with a matrix-free
approach. The necessary and sufficient conditions are referred to as
the KKT conditions, and the system referred to as the KKT system,
after Karush, Kuhn and Tucker, the mathematicians who derived the
optimality system [2M-Kar39] [2M-KT51].
Interestingly, one of the equations in the KKT system is the adjoint
equation, which will be derived in a different way in the next
section.

By contrast, optimisation algorithms that can exploit information
about the derivatives of [image: \widehat{J}] can typically converge
onto a local minimum with one or two orders of magnitude fewer
iterations, as the gradient provides information about where to step
next in parameter space. Therefore, if evaluating the PDE solution is
expensive (and it usually is), then computing derivative information
of [image: \widehat{J}] becomes very important for the practical
solution of such PDE-constrained optimisation problems.

So, how should the gradient
[image: {\mathrm{d}\widehat{J}}/{\mathrm{d}m}] be computed? There are
three main approaches, each with their own advantages and
disadvantages. Discussing these strategies is the topic of the
next section.

References

		[2M-Kar39]		W. Karush. Minima of functions of several variables with inequalities as side constraints. Master’s thesis, University of Chicago, Chicago, IL, USA, 1939.

		[2M-KT51]		H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Proceedings of 2nd Berkeley Symposium, 481–492. University of California Press, 1951.

 © Copyright 2015, The dolfin-adjoint team.

documentation/stokes-topology/stokes-topology.html

 Navigation

 		
 index

 		
 modules |

 		 »

Topology optimisation of fluids in Stokes flow

Section author: Patrick E. Farrell <patrick.farrell@maths.ox.ac.uk>

This demo solves example 4 of [4E-BP03].

Problem definition

This problem is to minimise the dissipated power in the fluid

[image: \frac{1}{2} \int_{\Omega} \alpha(\rho) u \cdot u + \mu \int_{\Omega} \nabla u : \nabla u - \int_{\Omega} f u]

subject to the Stokes equations with velocity Dirichlet conditions

[image: \alpha(\rho) u - \mu \nabla^2 u + \nabla p &= f \qquad \mathrm{in} \ \Omega \\
 \mathrm{div}(u) &= 0 \qquad \mathrm{on} \ \Omega \\
 u &= b \qquad \mathrm{on} \ \delta \Omega \\]

and to the control constraints on available fluid volume

[image: 0 \le \rho(x) &\le 1 \qquad \forall x \in \Omega \\
\int_{\Omega} \rho &\le V]

where [image: u] is the velocity, [image: p] is the pressure,
[image: \rho] is the control ([image: \rho(x) = 1] means fluid present,
[image: \rho(x) = 0] means no fluid present), [image: f] is a prescribed
source term (here 0), [image: V] is the volume bound on the control,
[image: \alpha(\rho)] models the inverse permeability as a function of
the control

[image: \alpha(\rho) = \bar{\alpha} + (\underline{\alpha} - \bar{\alpha}) \rho \frac{1 + q}{\rho + q}]

with [image: \bar{\alpha}], [image: \underline{\alpha}] and [image: q]
prescribed constants. The parameter [image: q] penalises deviations
from the values 0 or 1; the higher q, the closer the solution will be
to having the two discrete values 0 or 1.

The problem domain [image: \Omega] is parameterised by the aspect ratio
[image: \delta] (the domain is 1 unit high and [image: \delta] units
wide); in this example, we will solve the harder problem of
[image: \delta = 1.5]. The boundary conditions are specified in figure
10 of Borrvall and Petersson, reproduced here.

[image: ../../_images/stokes-topology-bcs.png]
Physically, this problem corresponds to finding the fluid-solid
distribution [image: \rho(x)] that minimises the dissipated power in
the fluid.

As Borrvall and Petersson comment, it is necessary to solve this
problem with [image: q=0.1] to ensure that the result approaches a
discrete-valued solution, but solving this problem directly with this
value of [image: q] leads to a local minimum configuration of two
straight pipes across the domain (like the top half of figure 11).
Therefore, we follow their suggestion to first solve the optimisation
problem with a smaller penalty parameter of [image: q=0.01]; this
optimisation problem does not yield bang-bang solutions but is easier
to solve, and gives an initial guess from which the [image: q=0.1] case
converges to the better minimum.

Implementation

First, the dolfin and dolfin_adjoint modules are
imported:

from dolfin import *
from dolfin_adjoint import *

Next we import the Python interface to IPOPT. If IPOPT is
unavailable on your system, we strongly suggest you install it; IPOPT is a well-established open-source
optimisation algorithm.

try:
 import pyipopt
except ImportError:
 info_red("""This example depends on IPOPT and pyipopt. \
When compiling IPOPT, make sure to link against HSL, as it \
is a necessity for practical problems.""")
 raise

turn off redundant output in parallel
parameters["std_out_all_processes"] = False

Next we define some constants, and define the inverse permeability as
a function of [image: \rho].

mu = Constant(1.0) # viscosity
alphaunderbar = 2.5 * mu / (100**2) # parameter for \alpha
alphabar = 2.5 * mu / (0.01**2) # parameter for \alpha
q = Constant(0.01) # q value that controls difficulty/discrete-valuedness of solution

def alpha(rho):
 """Inverse permeability as a function of rho, equation (40)"""
 return alphabar + (alphaunderbar - alphabar) * rho * (1 + q) / (rho + q)

Next we define the mesh (a rectangle 1 high and [image: \delta] wide)
and the function spaces to be used for the control [image: \rho], the
velocity [image: u] and the pressure [image: p]. Here we will use the
Taylor-Hood finite element to discretise the Stokes equations
[4E-TH73].

N = 200
delta = 1.5 # The aspect ratio of the domain, 1 high and \delta wide
V = Constant(1.0/3) * delta # want the fluid to occupy 1/3 of the domain

mesh = RectangleMesh(mpi_comm_world(), Point(0.0, 0.0), Point(delta, 1.0), N, N)
A = FunctionSpace(mesh, "CG", 1) # control function space
U = VectorFunctionSpace(mesh, "CG", 2) # velocity function space
P = FunctionSpace(mesh, "CG", 1) # pressure function space
W = MixedFunctionSpace([U, P]) # mixed Taylor-Hood function space

Define the boundary condition on velocity

class InflowOutflow(Expression):
 def eval(self, values, x):
 values[1] = 0.0
 values[0] = 0.0
 l = 1.0/6.0
 gbar = 1.0

 if x[0] == 0.0 or x[0] == delta:
 if (1.0/4 - l/2) < x[1] < (1.0/4 + l/2):
 t = x[1] - 1.0/4
 values[0] = gbar*(1 - (2*t/l)**2)
 if (3.0/4 - l/2) < x[1] < (3.0/4 + l/2):
 t = x[1] - 3.0/4
 values[0] = gbar*(1 - (2*t/l)**2)

 def value_shape(self):
 return (2,)

Next we define a function that given a control [image: \rho] solves the
forward PDE for velocity and pressure [image: (u, p)]. (The advantage
of formulating it in this manner is that it makes it easy to conduct
Taylor remainder convergence tests.)

def forward(rho):
 """Solve the forward problem for a given fluid distribution rho(x)."""
 w = Function(W)
 (u, p) = split(w)
 (v, q) = TestFunctions(W)

 F = (alpha(rho) * inner(u, v) * dx + inner(grad(u), grad(v)) * dx +
 inner(grad(p), v) * dx + inner(div(u), q) * dx)
 bc = DirichletBC(W.sub(0), InflowOutflow(), "on_boundary")
 solve(F == 0, w, bcs=bc)

 return w

Now we define the __main__ section. We define the initial guess
for the control and use it to solve the forward PDE. In order to
ensure feasibility of the initial control guess, we interpolate the
volume bound; this ensures that the integral constraint and the bound
constraint are satisfied.

if __name__ == "__main__":
 rho = interpolate(Constant(float(V)/delta), A, name="Control")
 w = forward(rho)
 (u, p) = split(w)

With the forward problem solved once, dolfin_adjoint has
built a tape of the forward model; it will use this tape to drive
the optimisation, by repeatedly solving the forward model and the
adjoint model for varying control inputs.

As in the Poisson topology example, we will use an evaluation
callback to dump the control iterates to disk for visualisation. As
this optimisation problem ([image: q=0.01]) is solved only to generate
an initial guess for the main task ([image: q=0.1]), we shall save
these iterates in output/control_iterations_guess.pvd.

controls = File("output/control_iterations_guess.pvd")
allctrls = File("output/allcontrols.pvd")
rho_viz = Function(A, name="ControlVisualisation")
def eval_cb(j, rho):
 rho_viz.assign(rho)
 controls << rho_viz
 allctrls << rho_viz

Now we define the functional and reduced functional:

J = Functional(0.5 * inner(alpha(rho) * u, u) * dx + mu * inner(grad(u), grad(u)) * dx)
m = Control(rho)
Jhat = ReducedFunctional(J, m, eval_cb_post=eval_cb)

The control constraints are the same as the Poisson topology
example, and so won’t be
discussed again here.

Bound constraints
lb = 0.0
ub = 1.0

Volume constraints
class VolumeConstraint(InequalityConstraint):
 """A class that enforces the volume constraint g(a) = V - a*dx >= 0."""
 def __init__(self, V):
 self.V = float(V)

The derivative of the constraint g(x) is constant
(it is the negative of the diagonal of the lumped mass matrix for the
control function space), so let’s assemble it here once.
This is also useful in rapidly calculating the integral each time
without re-assembling.

 self.smass = assemble(TestFunction(A) * Constant(1) * dx)
 self.tmpvec = Function(A)

def function(self, m):
 print "Evaluting constraint residual"
 self.tmpvec.vector()[:] = m

 # Compute the integral of the control over the domain
 integral = self.smass.inner(self.tmpvec.vector())
 print "Current control integral: ", integral
 return [self.V - integral]

def jacobian(self, m):
 print "Computing constraint Jacobian"
 return [-self.smass]

def output_workspace(self):
 return [0.0]

Now that all the ingredients are in place, we can perform the initial
optimisation. We set the maximum number of iterations for this initial
optimisation problem to 30; there’s no need to solve this to
completion, as its only purpose is to generate an initial guess.

Solve the optimisation problem with q = 0.01
problem = MinimizationProblem(Jhat, bounds=(lb, ub), constraints=VolumeConstraint(V))
parameters = {'maximum_iterations': 20}

solver = IPOPTSolver(problem, parameters=parameters)
rho_opt = solver.solve()

File("output/control_solution_guess.xdmf") << rho_opt

With the optimised value for [image: q=0.01] in hand, we reset the
dolfin-adjoint state, clearing its tape, and configure the new problem
we want to solve. We need to update the values of [image: q] and
[image: \rho]:

q.assign(0.1)
rho.assign(rho_opt)
adj_reset()

Since we have cleared the tape, we need to execute the forward model
once again to redefine the problem. (It is also possible to modify the
tape, but this way is easier to understand.) We will also redefine the
functionals and parameters; this time, the evaluation callback will
save the optimisation iterations to
output/control_iterations_final.pvd.

File("intermediate-guess-%s.xdmf" % N) << rho

w = forward(rho)
(u, p) = split(w)

Define the reduced functionals
controls = File("output/control_iterations_final.pvd")
rho_viz = Function(A, name="ControlVisualisation")
def eval_cb(j, rho):
 rho_viz.assign(rho)
 controls << rho_viz
 allctrls << rho_viz

J = Functional(0.5 * inner(alpha(rho) * u, u) * dx + mu * inner(grad(u), grad(u)) * dx)
m = Control(rho)
Jhat = ReducedFunctional(J, m, eval_cb_post=eval_cb)

We can now solve the optimisation problem with [image: q=0.1], starting
from the solution of [image: q=0.01]:

problem = MinimizationProblem(Jhat, bounds=(lb, ub), constraints=VolumeConstraint(V))
parameters = {'maximum_iterations': 100}

solver = IPOPTSolver(problem, parameters=parameters)
rho_opt = solver.solve()

File("output/control_solution_final.xdmf") << rho_opt

The example code can be found in examples/stokes-topology/ in the
dolfin-adjoint source tree, and executed as follows:

$ mpiexec -n 4 python stokes-topology.py
...
Number of Iterations....: 100

 (scaled) (unscaled)
Objective...............: 4.5944633030224409e+01 4.5944633030224409e+01
Dual infeasibility......: 1.8048641504211900e-03 1.8048641504211900e-03
Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity.........: 9.6698653740681504e-05 9.6698653740681504e-05
Overall NLP error.......: 1.8048641504211900e-03 1.8048641504211900e-03

Number of objective function evaluations = 105
Number of objective gradient evaluations = 101
Number of equality constraint evaluations = 0
Number of inequality constraint evaluations = 105
Number of equality constraint Jacobian evaluations = 0
Number of inequality constraint Jacobian evaluations = 101
Number of Lagrangian Hessian evaluations = 0
Total CPU secs in IPOPT (w/o function evaluations) = 11.585
Total CPU secs in NLP function evaluations = 556.795

EXIT: Maximum Number of Iterations Exceeded.

The optimisation iterations can be visualised by opening
output/control_iterations_final.pvd in paraview. The resulting
solution appears very similar to the solution proposed in
[4E-BP03].

[image: ../../_images/stokes-topology.png]
References

		[4E-BP03]		(1, 2) T. Borrvall and J. Petersson. Topology optimization of fluids in Stokes flow. International Journal for Numerical Methods in Fluids, 41(1):77–107, 2003. doi:10.1002/fld.426 [http://dx.doi.org/10.1002/fld.426].

		[4E-TH73]		C. Taylor and P. Hood. A numerical solution of the Navier-Stokes equations using the finite element technique. Computers & Fluids, 1(1):73–100, 1973. doi:10.1016/0045-7930(73)90027-3 [http://dx.doi.org/10.1016/0045-7930(73)90027-3].

 © Copyright 2015, The dolfin-adjoint team.

documentation/time-dependent-stokes/time-dependent-stokes.html

 Navigation

 		
 index

 		
 modules |

 		 »

Time-dependent optimal control of Stokes flow

Section author: Marie E. Rognes <meg@simula.no>, Steven Vandekerckhove <Steven.Vandekerckhove@kuleuven.be>

Problem definition

The problem is to minimise the following tracking-type functional

[image: J(y, u) =
 \frac{1}{2} \int_{0}^T \int_{\Omega} | y - z |^2 \, \mathrm{d}x \, \, \mathrm{d}t
 + \frac{\alpha}{2} \int_{0}^T \int_{\Omega} |u|^2 \, \mathrm{d}x \, \, \mathrm{d}t]

subject to the time-dependent Stokes equation

[image: y_t - \nu \Delta y + \nabla p &= u(t) \qquad \mathrm{in} \, \Omega \times (0, T), \\
- \nabla \cdot y &= 0 \qquad \mathrm{in} \, \Omega \times (0, T), \\
y(\cdot, t) &= 0 \qquad \mathrm{on} \, \partial \Omega \times (0, T), \\
y(\cdot, 0) &= y_0 \qquad \mathrm{in} \, \Omega .]

In particular, we aim to

[image: \min J(y, u) \textrm{ over } (y, u)]

Discretization

Using the implicit Euler discretization in time with timestep
[image: \Delta t], the time-discretized differential equation reads:
for a given [image: u^n], for each time step [image: n], find
[image: (y^n, p^n)] such that

[image: y^{n} - \Delta t \, (\nu \Delta y^{n} - \nabla p^{n}) = \Delta t \, u^n + y^{n-1} \\

- \nabla \cdot y^{n} = 0]

Let [image: V] be the space of continuous piecewise quadratic vector
fields that vanish on the boundary [image: \partial \Omega]. Let
[image: Q] be the space of continuous piecewise linear vector functions
that have average value zero. Multiplying by test functions
[image: \phi \in V] and [image: q \in Q], integrating by parts over
[image: \Omega], the problem reads: find [image: y_h^{n} \in V] and
[image: p_h^{n} \in Q] such that

[image: \langle y_h^{n}, \phi \rangle
+ \Delta t \langle \nu \nabla y_h^{n}, \nabla \phi \rangle
- \Delta t \langle p_h^{n}, \nabla \cdot \phi \rangle
 &= \Delta t \langle u^n, \phi \rangle
 + \langle y_h^{n-1}, \phi \rangle \\
- \Delta t \langle \nabla \cdot y_h^{n}, q \rangle &= 0]

hold for all [image: \phi \in V] and [image: q \in Q]. Note that we here
have multiplied the last equation by [image: \Delta t] for the sake of
symmetry: this can be advantageous for the solution of resulting
linear system of equations.

Implementation

We start our implementation by importing the dolfin and dolfin_adjoint modules:

from dolfin import *
from dolfin_adjoint import *

 © Copyright 2015, The dolfin-adjoint team.

documentation/poisson-mother/poisson-mother.html

 Navigation

 		
 index

 		
 modules |

 		 »

Optimal control of the Poisson equation

Section author: Simon W. Funke <simon@simula.no>

This demo solves the mother problem of PDE-constrained
optimisation: the optimal control of the Poisson equation.
Physically, this problem can the interpreted as finding the best
heating/cooling of a cooktop to achieve a desired temperature
profile.

This example introduces the basics of how to solve optimisation
problems with dolfin-adjoint.

Problem definition

Mathematically, the problem is to minimise the following tracking-type
functional

[image: \frac{1}{2} \int_{\Omega} (u - d)^2 \textrm{d}x
 + \frac{\alpha}{2} \int_{\Omega} f^2 \textrm{d}s]

subject to the Poisson equation with Dirichlet boundary conditions

[image: -\kappa \Delta u &= f \qquad \mathrm{in} \ \Omega \\
 u &= 0 \qquad \mathrm{on} \ \partial \Omega \\
 a & \le f \le b]

where [image: \Omega] is the domain of interest (here the unit square),
[image: u: \Omega \to \mathbb R] is the unkown temperature, [image: \kappa
\in \mathbb R] is the thermal diffusivity (here: [image: \kappa = 1]),
[image: f: \Omega \to \mathbb R] is the unknown control function acting
as source term ([image: f(x) > 0] corresponds to heating and
[image: f(x) < 0] corresponds to cooling), [image: d: \Omega \to \mathbb
R] is the given desired temperature profile, [image: \alpha \in [0,
\infty)] is a Tikhonov regularisation parameter, and [image: a, b:
\Omega \to \mathbb R] are lower and upper bounds for the control
function.

It can be shown that this problem is well-posed and has a unique
solution, see [1E-Troltzsch10] or section 1.5 of
[1E-HPUU09].

Implementation

We start our implementation by importing the dolfin and
dolfin_adjoint modules:

from dolfin import *
from dolfin_adjoint import *
set_log_level(ERROR)

Next we import the Python interface to Moola. Moola is a collection
of optimisation solvers specifically designed for PDE-constrained
optimisation problems. If Moola is not yet available on your system,
it is easy to install.

import moola

Next we create a regular mesh of the unit square. Some optimisation
algorithms suffer from bad performance when the mesh is non-uniform
(i.e. when the mesh is partially refined). To demonstrate that Moola
does not have this issue, we refine the mesh near the center of the
domain:

n = 64
mesh = UnitSquareMesh(n, n)

cf = CellFunction("bool", mesh)
subdomain = CompiledSubDomain('std::abs(x[0]-0.5)<0.25 && std::abs(x[1]-0.5)<0.25')
subdomain.mark(cf, True)
mesh = refine(mesh, cf)

The resulting mesh looks like this:

[image: ../../_images/mesh.png]
Then we define the discrete function spaces and create functions for
the temperature and the control function.

V = FunctionSpace(mesh, "CG", 1)
W = FunctionSpace(mesh, "DG", 0)

f = interpolate(Expression("x[0]+x[1]"), W, name='Control')
u = Function(V, name='State')
v = TestFunction(V)

The optimisation algorithm will use the value of the control
function [image: f] as an initial guess for the optimisation. A
zero-initial guess for the control appears to be too simple: for
example L-BFGS finds the optimal control with just two iterations.
To make it more interesting, we chose a non-zero initial guess
instead.

Next we define the weak formulation of the Poisson problem and solve
it.

F = (inner(grad(u), grad(v)) - f*v)*dx
bc = DirichletBC(V, 0.0, "on_boundary")
solve(F == 0, u, bc)

By doing so, dolfin-adjoint automatically records the details of
each PDE solve (also called a tape). This tape will be used by the
optimisation algorithm to repeatedly solve the forward and adjoint
problems for varying control inputs.

Before we can start the optimisation, we need to specify the control
variable and define the functional of interest. For this example we
use [image: d(x, y) = \frac{1}{2\pi^2}\sin(\pi x)\sin(\pi y)] as the
desired temperature profile, and choose [image: f] as the control
variable.

x = SpatialCoordinate(mesh)
d = 1/(2*pi**2)*sin(pi*x[0])*sin(pi*x[1]) # the desired temperature profile

alpha = Constant(1e-6)
J = Functional((0.5*inner(u-d, u-d))*dx + alpha/2*f**2*dx)
control = Control(f)

The next step is to formulate the so-called reduced optimisation
problem. The idea is that the solution [image: u] can be considered
as a function of [image: f]: given a value for [image: f], we can
solve the Poisson equation to obtain the associated solution
[image: u]. By denoting this solution function as [image: u(f)], we
can write the original optimisation problem as a reduced problem:

[image: \min_f \frac{1}{2} \int_{\Omega} (u(f) - d)^2 \textrm{d}x + \frac{\alpha}{2} \int_{\Omega} f^2 \textrm{d}s]

Note that no PDE-constraint is required anymore, since it is
implicitly contained in the solution function.

dolfin-adjoint can automatically reduce the optimisation problem
by creating a ReducedFunctional object. This object
solves the forward PDE using dolfin-adjoint’s tape each time the
functional is to be evaluated, and derives and solves the adjoint
equation each time the functional gradient is to be evaluated.

rf = ReducedFunctional(J, control)

Now that all the ingredients are in place, we can perform the
optimisation.

The ReducedFunctional class has a method
ReducedFunctional.moola_problem, which generates the
necessary interfaces for the Moola optimisation framework. Then, we
wrap the control function into a Moola object, and create a
NewtonCG solver for solving the optimisation problem:

problem = rf.moola_problem()
f_moola = moola.DolfinPrimalVector(f)
solver = moola.NewtonCG(problem, f_moola, options={'gtol': 1e-9,
 'maxiter': 20,
 'display': 3,
 'ncg_hesstol': 0})

Alternatively an L-BFGS solver could initialised by:

solver = moola.BFGS(problem, f_moola, options={'jtol': 0,
 'gtol': 1e-9,
 'Hinit': "default",
 'maxiter': 100,
 'mem_lim': 10})

Then we can solve the optimisation problem, extract the optimal
control and plot it:

sol = solver.solve()
f_opt = sol['control'].data

plot(f_opt, interactive=True, title="f_opt")

Define the expressions of the analytical solution

f_analytic = Expression("sin(pi*x[0])*sin(pi*x[1])")
u_analytic = Expression("1/(2*pi*pi)*sin(pi*x[0])*sin(pi*x[1])")

We can then compute the errors between numerical and analytical
solutions.

f.assign(f_opt)
solve(F == 0, u, bc)
control_error = errornorm(f_analytic, f_opt)
state_error = errornorm(u_analytic, u)
print "h(min): %e." % mesh.hmin()
print "Error in state: %e." % state_error
print "Error in control: %e." % control_error

The example code can be found in examples/poisson-mother in the
dolfin-adjoint source tree, and executed as follows:

$ python poisson-mother.py
...

Convergence order and mesh independence

It is highly desirable that the optimisation algorithm achieve mesh
independence: i.e., that the required number of optimisation
iterations is independent of the mesh resolution. Achieving mesh
independence requires paying careful attention to the inner product
structure of the function space in which the solution is sought.

For the desired temperature above and [image: \alpha=0], the analytical
solutions of the optimisation problem is:

[image: f_{\textrm{analytic}} &= \sin(\pi x) \sin(\pi y) \\
u_{\textrm{analytic}} &= \frac{1}{2\pi^2} \sin(\pi x) \sin(\pi y)]

The following numerical experiments solve the optimisation problem
for a sequence of meshes with increasing resolutions and record the
numerical error and the required number of optimisation iterations.
A regularisation coefficient of [image: \alpha = 10^{-6}] was used, and
the optimisation was stopped when the [image: L_2] norm of the
reduced functional gradient dropped below [image: 10^{-9}].

Moola Newton-CG

The Moola Newton-CG algorithm implements an inexact Newton method.
Hence, even though the optimality system of our problem is linear,
we can not expect the algorithm to converge in a single iteration
(however, we could it enforce that by explicitly setting the
relative tolerance of the CG algorithm to zero).

Running the Newton-CG algorithm for the different meshes yielded:

		Mesh element size
		Newton iterations
		CG iterations
		Error in control

		6.250e-02
		3
		54
		3.83e-02

		3.125e-02
		3
		59
		1.69e-02

		1.563e-02
		3
		57
		8.05e-03

		7.813e-03
		3
		58
		3.97e-03

Here CG iterations denotes the total number of CG iterations during
the optimisation. Mesh independent convergence can be observed, both
in the Newton and CG iterations.

From our choice of discretisation ([image: DG_0] for [image: f]), we
expect a 1st order of convergence for the control variable. Indeed,
the error column in the numerical experiments confirm that this rate
is obtained in practice.

Moola L-BFGS

The L-BFGS algorithm in Moola implements the limited memory quasi
Newton method with Broyden-Fletcher-Goldfarb-Shanno updates. For
the numerical experiments, the set of the memory history was set to
10.

The numerical results yield:

		Mesh element size
		L-BFGS iterations
		Error in control

		6.250e-02
		53
		3.83e-02

		3.125e-02
		50
		1.69e-02

		1.563e-02
		57
		8.05e-03

		7.813e-03
		56
		3.97e-03

Again a mesh-independent convergence and a 1st order convergence of
the control can be observed.

		[1E-HPUU09]		M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE constraints. volume 23 of Mathematical Modelling: Theory and Applications. Springer, 2009.

		[1E-Troltzsch10]		F. Tröltzsch. Optimal control of partial differential equations: Theory, methods and applications. volume 112 of Graduate Studies in Mathematics. AMS, 2010.

 © Copyright 2015, The dolfin-adjoint team.

documentation/poisson-topology/poisson-topology.html

 Navigation

 		
 index

 		
 modules |

 		 »

Topology optimisation of heat conduction problems governed by the Poisson equation

Section author: Patrick E. Farrell <patrick.farrell@maths.ox.ac.uk>

This demo solves example 1 of [3E-GHBS06].

Problem definition

This problem is to minimise the compliance

[image: \int_{\Omega} fT + \alpha \int_{\Omega} \nabla a \cdot \nabla a]

subject to the Poisson equation with mixed Dirichlet–Neumann
conditions

[image: -\mathrm{div}(k(a) \nabla T) &= f \qquad \mathrm{in} \ \Omega \\
 T &= 0 \qquad \mathrm{on} \ \delta \Omega_D \\
 (k(a) \nabla T) &= 0 \qquad \mathrm{on} \ \delta \Omega_N \\]

and to the control constraints

[image: 0 \le a(x) &\le 1 \qquad \forall x \in \Omega \\
\int_{\Omega} a &\le V]

where [image: \Omega] is the unit square, [image: T] is the temperature,
[image: a] is the control ([image: a(x) = 1] means material, [image: a(x)
= 0] means no material), [image: f] is a prescribed source term (here
the constant [image: 10^{-2}]), [image: k(a)] is the Solid Isotropic
Material with Penalisation parameterisation [3E-BendseS03]
[image: \epsilon + (1 - \epsilon) a^p] with [image: \epsilon] and
[image: p] prescribed constants, [image: \alpha] is a regularisation
term, and [image: V] is the volume bound on the control.

Physically, the problem is to finding the material distribution
[image: a(x)] that minimises the integral of the temperature when the amount of highly
conducting material is limited. This code makes several approximations to
this physical problem. Instead of solving an integer optimisation problem (at each
location, we either have conducting material or we do not), a continuous relaxation
is performed; this is standard in topology optimisation [3E-BendseS03]. Furthermore,
the discrete solution varies as the mesh is refined: the continuous solution exhibits
features at all scales, and these must be carefully handled in a discretisation
of the problem. In this example we merely add a fixed [image: H^1] regularisation
term; a better approach is to add a mesh-dependent Helmholtz filter (see for example
[3E-LS11]).

This example demonstrates how to implement general control
constraints, and how to use IPOPT [3E-WB06] to solve the
optimisation problem.

Implementation

First, the dolfin and dolfin_adjoint modules are
imported:

from dolfin import *
from dolfin_adjoint import *

Next we import the Python interface to IPOPT. If IPOPT is
unavailable on your system, we strongly suggest you install it; IPOPT is a well-established open-source
optimisation algorithm.

try:
 import pyipopt
except ImportError:
 info_red("""This example depends on IPOPT and pyipopt. \
When compiling IPOPT, make sure to link against HSL, as it \
is a necessity for practical problems.""")
 raise

turn off redundant output in parallel
parameters["std_out_all_processes"] = False

Next we define some constants, and the Solid Isotropic Material with
Penalisation (SIMP) rule.

V = Constant(0.4) # volume bound on the control
p = Constant(5) # power used in the solid isotropic material
 # with penalisation (SIMP) rule, to encourage the control
 # solution to attain either 0 or 1
eps = Constant(1.0e-3) # epsilon used in the solid isotropic material
alpha = Constant(1.0e-8) # regularisation coefficient in functional

def k(a):
 """Solid isotropic material with penalisation (SIMP) conductivity
rule, equation (11)."""
 return eps + (1 - eps) * a**p

Next we define the mesh (a unit square) and the function spaces to be
used for the control [image: a] and forward solution [image: T].

n = 250
mesh = UnitSquareMesh(n, n)
A = FunctionSpace(mesh, "CG", 1) # function space for control
P = FunctionSpace(mesh, "CG", 1) # function space for solution

Next we define the forward boundary condition and source term.

class WestNorth(SubDomain):
 """The top and left boundary of the unitsquare, used to enforce the Dirichlet boundary condition."""
 def inside(self, x, on_boundary):
 return (x[0] == 0.0 or x[1] == 1.0) and on_boundary

the Dirichlet BC; the Neumann BC will be implemented implicitly by
dropping the surface integral after integration by parts
bc = [DirichletBC(P, 0.0, WestNorth())]
f = interpolate(Constant(1.0e-2), P, name="SourceTerm") # the volume source term for the PDE

Next we define a function that given a control [image: a] solves the
forward PDE for the temperature [image: T]. (The advantage of
formulating it in this manner is that it makes it easy to conduct
Taylor remainder convergence tests.)

def forward(a):
 """Solve the forward problem for a given material distribution a(x)."""
 T = Function(P, name="Temperature")
 v = TestFunction(P)

 F = inner(grad(v), k(a)*grad(T))*dx - f*v*dx
 solve(F == 0, T, bc, solver_parameters={"newton_solver": {"absolute_tolerance": 1.0e-7,
 "maximum_iterations": 20}})

 return T

Now we define the __main__ section. We define the initial guess
for the control and use it to solve the forward PDE. In order to
ensure feasibility of the initial control guess, we interpolate the
volume bound; this ensures that the integral constraint and the
bound constraint are satisfied.

if __name__ == "__main__":
 a = interpolate(V, A, name="Control") # initial guess.
 T = forward(a) # solve the forward problem once.

With the forward problem solved once, dolfin_adjoint has
built a tape of the forward model; it will use this tape to drive
the optimisation, by repeatedly solving the forward model and the
adjoint model for varying control inputs.

A common task when solving optimisation problems is to implement a
callback that gets executed at every functional evaluation. (For
example, this might be to record the value of the functional so that
it can be plotted as a function of iteration, or to record statistics
about the controls suggested by the optimisation algorithm.) The
following callback outputs each evaluation to VTK format, for
visualisation in paraview. Note that the callback will output each
evaluation; this means that it will be called more often than the
number of iterations the optimisation algorithm reports, due to line
searches. It is also possible to implement callbacks that are
executed on every functional derivative calculation.

controls = File("output/control_iterations.pvd")
a_viz = Function(A, name="ControlVisualisation")
def eval_cb(j, a):
 a_viz.assign(a)
 controls << a_viz

Now we define the functional, compliance with a weak regularisation
term on the gradient of the material

J = Functional(f*T*dx + alpha * inner(grad(a), grad(a))*dx)
m = Control(a)
Jhat = ReducedFunctional(J, m, eval_cb_post=eval_cb)

This ReducedFunctional object solves the forward PDE using
dolfin-adjoint’s tape each time the functional is to be evaluated, and
derives and solves the adjoint equation each time the functional
gradient is to be evaluated. The ReducedFunctional object
takes in high-level Dolfin objects (i.e. the input to the evaluation
Jhat(a) would be a dolfin.Function).

Now let us configure the control constraints. The bound constraints
are easy:

lb = 0.0
ub = 1.0

The volume constraint involves a little bit more work. Following
[3E-NW06], inequality constraints are represented as
(possibly vector) functions [image: g] defined such that [image: g(a)
\ge 0]. The constraint is implemented by subclassing the
InequalityConstraint class. (To implement equality
constraints, see the documentation for
EqualityConstraint.) In this case, our [image: g(a) = V -
\int_{\Omega} a]. In order to implement the constraint, we have to
implement three methods: one to compute the constraint value, one to
compute its Jacobian, and one to return the number of components in
the constraint.

class VolumeConstraint(InequalityConstraint):
 """A class that enforces the volume constraint g(a) = V - a*dx >= 0."""
 def __init__(self, V):
 self.V = float(V)

The derivative of the constraint g(x) is constant (it is the
diagonal of the lumped mass matrix for the control function space),
so let’s assemble it here once. This is also useful in rapidly
calculating the integral each time without re-assembling.

 self.smass = assemble(TestFunction(A) * Constant(1) * dx)
 self.tmpvec = Function(A)

def function(self, m):
 self.tmpvec.vector()[:] = m

Compute the integral of the control over the domain

 integral = self.smass.inner(self.tmpvec.vector())
 if MPI.rank(mpi_comm_world()) == 0:
 print "Current control integral: ", integral
 return [self.V - integral]

def jacobian(self, m):
 return [-self.smass]

def output_workspace(self):
 return [0.0]

def length(self):
 """Return the number of components in the constraint vector (here, one)."""
 return 1

Now that all the ingredients are in place, we can perform the
optimisation. The MinimizationProblem class
represents the optimisation problem to be solved. We instantiate
this and pass it to pyipopt to solve:

problem = MinimizationProblem(Jhat, bounds=(lb, ub), constraints=VolumeConstraint(V))
parameters = {"acceptable_tol": 1.0e-200, "maximum_iterations": 100}

solver = IPOPTSolver(problem, parameters=parameters)
a_opt = solver.solve()

File("output/control_solution.xdmf") << a_opt

The example code can be found in examples/poisson-topology/ in the
dolfin-adjoint source tree, and executed as follows:

$ mpiexec -n 4 python poisson-topology.py
...
Number of Iterations....: 28

 (scaled) (unscaled)
Objective...............: 8.5918769312525156e-05 8.5918769312525156e-05
Dual infeasibility......: 6.2885905846597543e-08 6.2885905846597543e-08
Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity.........: 3.1475629953894822e-09 3.1475629953894822e-09
Overall NLP error.......: 6.2885905846597543e-08 6.2885905846597543e-08

Number of objective function evaluations = 29
Number of objective gradient evaluations = 29
Number of equality constraint evaluations = 0
Number of inequality constraint evaluations = 29
Number of equality constraint Jacobian evaluations = 0
Number of inequality constraint Jacobian evaluations = 29
Number of Lagrangian Hessian evaluations = 0
Total CPU secs in IPOPT (w/o function evaluations) = 2.628
Total CPU secs in NLP function evaluations = 27.790

EXIT: Solved To Acceptable Level.

The optimisation iterations can be visualised by opening
output/control_iterations.pvd in paraview. The resulting solution
exhibits fascinating dendritic structures, similar to the reference
solution found in [3E-GHBS06].

[image: ../../_images/poisson-topology.png]
See also examples/poisson-topology/poisson-topology-3d.py for a 3-dimensional
generalisation of this example, with the following solution:

[image: ../../_images/poisson-topology-3d.png]
References

		[3E-BendseS03]		(1, 2) M. P. Bendsøe and O. Sigmund. Topology Optimization: Theory, Methods and Applications. Springer, 2003.

		[3E-GHBS06]		(1, 2) A. Gersborg-Hansen, M.P. Bendsøe, and O. Sigmund. Topology optimization of heat conduction problems using the finite volume method. Structural and Multidisciplinary Optimization, 31(4):251–259, 2006. doi:10.1007/s00158-005-0584-3 [http://dx.doi.org/10.1007/s00158-005-0584-3].

		[3E-LS11]		B. S. Lazarov and O. Sigmund. Filters in topology optimization based on Helmholtz-type differential equations. International Journal for Numerical Methods in Engineering, 86(6):765–781, 2011. doi:10.1002/nme.3072 [http://dx.doi.org/10.1002/nme.3072].

		[3E-NW06]		J. Nocedal and S. J Wright. Numerical Optimization. Springer Verlag, 2006.

		[3E-WB06]		A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57, 2006. doi:10.1007/s10107-004-0559-y [http://dx.doi.org/10.1007/s10107-004-0559-y].

 © Copyright 2015, The dolfin-adjoint team.

_themes/dolfin-adjoint/static/highlight/README.ru.html

 Navigation

 		
 index

 		
 modules |

 		 »

Highlight.js

Highlight.js нужен для подсветки синтаксиса в примерах кода в блогах,
форумах и вообще на любых веб-страницах. Пользоваться им очень просто,
потому что работает он автоматически: сам находит блоки кода, сам
определяет язык, сам подсвечивает.

Автоопределением языка можно управлять, когда оно не справляется само (см.
дальше “Эвристика”).

Простое использование

Подключите библиотеку и стиль на страницу и повесть вызов подсветки на
загрузку страницы:

<link rel="stylesheet" href="styles/default.css">
<script src="highlight.pack.js"></script>
<script>hljs.initHighlightingOnLoad();</script>

Весь код на странице, обрамлённый в теги <pre><code> .. </code></pre>
будет автоматически подсвечен. Если вы используете другие теги или хотите
подсвечивать блоки кода динамически, читайте “Инициализацию вручную” ниже.

		Вы можете скачать собственную версию “highlight.pack.js” или сослаться
на захостенный файл, как описано на странице загрузки:
http://highlightjs.org/download/

		Стилевые темы можно найти в загруженном архиве или также использовать
захостенные. Чтобы сделать собственный стиль для своего сайта, вам
будет полезен CSS classes reference [http://highlightjs.readthedocs.org/en/latest/css-classes-reference.html], который тоже есть в архиве.

node.js

Highlight.js можно использовать в node.js. Библиотеку со всеми возможными языками можно
установить с NPM:

npm install highlight.js

Также её можно собрать из исходников с только теми языками, которые нужны:

python3 tools/build.py -tnode lang1 lang2 ..

Использование библиотеки:

var hljs = require('highlight.js');

// Если вы знаете язык
hljs.highlight(lang, code).value;

// Автоопределение языка
hljs.highlightAuto(code).value;

AMD

Highlight.js можно использовать с загрузчиком AMD-модулей. Для этого его
нужно собрать из исходников следующей командой:

$ python3 tools/build.py -tamd lang1 lang2 ..

Она создаст файл build/highlight.pack.js, который является загружаемым
AMD-модулем и содержит все выбранные при сборке языки. Используется он так:

require(["highlight.js/build/highlight.pack"], function(hljs){

 // Если вы знаете язык
 hljs.highlight(lang, code).value;

 // Автоопределение языка
 hljs.highlightAuto(code).value;
});

Замена TABов

Также вы можете заменить символы TAB (‘\x09’), используемые для отступов, на
фиксированное количество пробелов или на отдельный , чтобы задать ему
какой-нибудь специальный стиль:

<script type="text/javascript">
 hljs.configure({tabReplace: ' '}); // 4 spaces
 // ... or
 hljs.configure({tabReplace: '\t'});

 hljs.initHighlightingOnLoad();
</script>

Инициализация вручную

Если вы используете другие теги для блоков кода, вы можете инициализировать их
явно с помощью функции highlightBlock(code). Она принимает DOM-элемент с
текстом расцвечиваемого кода и опционально - строчку для замены символов TAB.

Например с использованием jQuery код инициализации может выглядеть так:

$(document).ready(function() {
 $('pre code').each(function(i, e) {hljs.highlightBlock(e)});
});

highlightBlock можно также использовать, чтобы подсветить блоки кода,
добавленные на страницу динамически. Только убедитесь, что вы не делаете этого
повторно для уже раскрашенных блоков.

Если ваш блок кода использует
 вместо переводов строки (т.е. если это не
<pre>), включите опцию useBR:

hljs.configure({useBR: true});
$('div.code').each(function(i, e) {hljs.highlightBlock(e)});

Эвристика

Определение языка, на котором написан фрагмент, делается с помощью
довольно простой эвристики: программа пытается расцветить фрагмент всеми
языками подряд, и для каждого языка считает количество подошедших
синтаксически конструкций и ключевых слов. Для какого языка нашлось больше,
тот и выбирается.

Это означает, что в коротких фрагментах высока вероятность ошибки, что
периодически и случается. Чтобы указать язык фрагмента явно, надо написать
его название в виде класса к элементу <code>:

<pre><code class="html">...</code></pre>

Можно использовать рекомендованные в HTML5 названия классов:
“language-html”, “language-php”. Также можно назначать классы на элемент
<pre>.

Чтобы запретить расцветку фрагмента вообще, используется класс “no-highlight”:

<pre><code class="no-highlight">...</code></pre>

Экспорт

В файле export.html находится небольшая программка, которая показывает и дает
скопировать непосредственно HTML-код подсветки для любого заданного фрагмента кода.
Это может понадобится например на сайте, на котором нельзя подключить сам скрипт
highlight.js.

Координаты

		Версия: 8.0

		URL: http://highlightjs.org/

Лицензионное соглашение читайте в файле LICENSE.
Список авторов и соавторов читайте в файле AUTHORS.ru.txt

 © Copyright 2015, The dolfin-adjoint team.

_themes/dolfin-adjoint/static/highlight/CHANGES.html

 Navigation

 		
 index

 		
 modules |

 		 »

Version 8.0 beta

This new major release is quite a big overhaul bringing both new features and
some backwards incompatible changes. However, chances are that the majority of
users won’t be affected by the latter: the basic scenario described in the
README is left intact.

Here’s what did change in an incompatible way:

		We’re now prefixing all classes located in CSS classes reference [http://highlightjs.readthedocs.org/en/latest/css-classes-reference.html] with
hljs-, by default, because some class names would collide with other
people’s stylesheets. If you were using an older version, you might still want
the previous behavior, but still want to upgrade. To suppress this new
behavior, you would initialize like so:

<script type="text/javascript">
 hljs.configure({classPrefix: ''});
 hljs.initHighlightingOnLoad();
</script>

		tabReplace and useBR that were used in different places are also unified
into the global options object and are to be set using configure(options).
This function is documented in our API docs [http://highlightjs.readthedocs.org/en/latest/api.html]. Also note that these
parameters are gone from highlightBlock and fixMarkup which are now also
rely on configure.

		We removed public-facing (though undocumented) object hljs.LANGUAGES which
was used to register languages with the library in favor of two new methods:
registerLanguage and getLanguage. Both are documented in our API docs [http://highlightjs.readthedocs.org/en/latest/api.html].

		Result returned from highlight and highlightAuto no longer contains two
separate attributes contributing to relevance score, relevance and
keyword_count. They are now unified in relevance.

Another technically compatible change that nonetheless might need attention:

		The structure of the NPM package was refactored, so if you had installed it
locally, you’ll have to update your paths. The usual require('highlight.js')
works as before. This is contributed by Dmitry Smolin [https://github.com/dimsmol].

New features:

		Languages now can be recognized by multiple names like “js” for JavaScript or
“html” for, well, HTML (which earlier insisted on calling it “xml”). These
aliases can be specified in the class attribute of the code container in your
HTML as well as in various API calls. For now there are only a few very common
aliases but we’ll expand it in the future. All of them are listed in the
[class reference][].

		Language detection can now be restricted to a subset of languages relevant in
a given context — a web page or even a single highlighting call. This is
especially useful for node.js build that includes all the known languages.
Another example is a StackOverflow-style site where users specify languages
as tags rather than in the markdown-formatted code snippets. This is
documented in the [API reference][] (see methods highlightAuto and
configure).

		Language definition syntax streamlined with variants [https://groups.google.com/d/topic/highlightjs/VoGC9-1p5vk/discussion] and
beginKeywords [https://github.com/isagalaev/highlight.js/commit/6c7fdea002eb3949577a85b3f7930137c7c3038d].

New languages and styles:

		Oxygene by Carlo Kok [https://github.com/carlokok]

		Mathematica by Daniel Kvasnička [https://github.com/dkvasnicka]

		Autohotkey by Seongwon Lee [https://github.com/dlimpid]

		Atelier family of styles in 10 variants by Bram de Haan [https://github.com/atelierbram]

		Paraíso styles by Jan T. Sott [https://github.com/idleberg]

Miscelleanous improvements:

		Highlighting => prompts in Clojure.

		Jeremy Hull [https://github.com/sourrust] fixed a lot of styles for consistency.

		Finally, highlighting PHP and HTML mixed in peculiar ways [https://twitter.com/highlightjs/status/408890903017689088].

		Objective C and C# now properly highlight titles in method definition.

		Big overhaul of relevance counting for a number of languages. Please do report
bugs about mis-detection of non-trivial code snippets!

Version 7.5

A catch-up release dealing with some of the accumulated contributions. This one
is probably will be the last before the 8.0 which will be slightly backwards
incompatible regarding some advanced use-cases.

One outstanding change in this version is the addition of 6 languages to the
hosted script [http://highlightjs.org/download/]: Markdown, ObjectiveC, CoffeeScript, Apache, Nginx and
Makefile. It now weighs about 6K more but we’re going to keep it under 30K.

New languages:

		OCaml by Mehdi Dogguy [https://github.com/mehdid] and Nicolas Braud-Santoni [https://github.com/nbraud]

		LiveCode Server [http://livecode.com/developers/guides/server/] by Ralf Bitter [https://github.com/revig]

		Scilab by Sylvestre Ledru [https://github.com/sylvestre]

		basic support for Makefile by Ivan Sagalaev [https://github.com/isagalaev]

Improvements:

		Ruby’s got support for characters like ?A, ?1, ?\012 etc. and %r{..}
regexps.

		Clojure now allows a function call in the beginning of s-expressions
(($filter "myCount") (arr 1 2 3 4 5)).

		Haskell’s got new keywords and now recognizes more things like pragmas,
preprocessors, modules, containers, FFIs etc. Thanks to Zena Treep [https://github.com/treep]
for the implementation and to Jeremy Hull [https://github.com/sourrust] for guiding it.

		Miscelleanous fixes in PHP, Brainfuck, SCSS, Asciidoc, CMake, Python and F#.

New core developers

The latest long period of almost complete inactivity in the project coincided
with growing interest to it led to a decision that now seems completely obvious:
we need more core developers.

So without further ado let me welcome to the core team two long-time
contributors: Jeremy Hull [https://github.com/sourrust] and Oleg
Efimov [https://github.com/sannis].

Hope now we’ll be able to work through stuff faster!

P.S. The historical commit is here [https://github.com/isagalaev/highlight.js/commit/f3056941bda56d2b72276b97bc0dd5f230f2473f] for the record.

Version 7.4

This long overdue version is a snapshot of the current source tree with all the
changes that happened during the past year. Sorry for taking so long!

Along with the changes in code highlight.js has finally got its new home at
http://highlightjs.org/, moving from its craddle on Software Maniacs which it
outgrew a long time ago. Be sure to report any bugs about the site to
mailto:info@highlightjs.org.

On to what’s new…

New languages:

		Handlebars templates by Robin Ward [https://github.com/eviltrout]

		Oracle Rules Language by Jason Jacobson [https://github.com/jayce7]

		F# by Joans Follesø [https://github.com/follesoe]

		AsciiDoc and Haml by Dan Allen [https://github.com/mojavelinux]

		Lasso by Eric Knibbe [https://github.com/EricFromCanada]

		SCSS by Kurt Emch [https://github.com/kemch]

		VB.NET by Poren Chiang [https://github.com/rschiang]

		Mizar by Kelley van Evert [https://github.com/kelleyvanevert]

New style themes:

		Monokai Sublime by noformnocontent [http://nn.mit-license.org/]

		Railscasts by Damien White [https://github.com/visoft]

		Obsidian by Alexander Marenin [https://github.com/ioncreature]

		Docco by Simon Madine [https://github.com/thingsinjars]

		Mono Blue by Ivan Sagalaev [https://github.com/isagalaev] (uses a single color hue for everything)

		Foundation by Dan Allen [https://github.com/mojavelinux]

Other notable changes:

		Corrected many corner cases in CSS.

		Dropped Python 2 version of the build tool.

		Implemented building for the AMD format.

		Updated Rust keywords (thanks to Dmitry Medvinsky [https://github.com/dmedvinsky]).

		Literal regexes can now be used in language definitions.

		CoffeeScript highlighting is now significantly more robust and rich due to
input from Cédric Néhémie [https://github.com/abe33].

Version 7.3

		Since this version highlight.js no longer works in IE version 8 and older.
It’s made it possible to reduce the library size and dramatically improve code
readability and made it easier to maintain. Time to go forward!

		New languages: AppleScript (by Nathan Grigg [https://github.com/nathan11g] and Dr. Drang [https://github.com/drdrang]) and
Brainfuck (by Evgeny Stepanischev [https://github.com/bolknote]).

		Improvements to existing languages:
		interpreter prompt in Python (>>> and ...)

		@-properties and classes in CoffeeScript

		E4X in JavaScript (by Oleg Efimov [https://github.com/Sannis])

		new keywords in Perl (by Kirk Kimmel [https://github.com/kimmel])

		big Ruby syntax update (by Vasily Polovnyov [https://github.com/vast])

		small fixes in Bash

		Also Oleg Efimov did a great job of moving all the docs for language and style
developers and contributors from the old wiki under the source code in the
“docs” directory. Now these docs are nicely presented at
http://highlightjs.readthedocs.org/.

Version 7.2

A regular bug-fix release without any significant new features. Enjoy!

Version 7.1

A Summer crop:

		Marc Fornos [https://github.com/mfornos] made the definition for Clojure along with the matching
style Rainbow (which, of course, works for other languages too).

		CoffeeScript support continues to improve getting support for regular
expressions.

		Yoshihide Jimbo ported to highlight.js five Tomorrow styles [http://jmblog.github.com/color-themes-for-highlightjs/] from the
project by Chris Kempson [https://github.com/ChrisKempson/Tomorrow-Theme].

		Thanks to Casey Duncun [https://github.com/caseman] the library can now be built in the popular
AMD format [http://requirejs.org/docs/whyamd.html].

		And last but not least, we’ve got a fair number of correctness and consistency
fixes, including a pretty significant refactoring of Ruby.

Version 7.0

The reason for the new major version update is a global change of keyword syntax
which resulted in the library getting smaller once again. For example, the
hosted build is 2K less than at the previous version while supporting two new
languages.

Notable changes:

		The library now works not only in a browser but also with node.js [http://nodejs.org/]. It is
installable with npm install highlight.js. API [http://softwaremaniacs.org/wiki/doku.php/highlight.js:api] docs are available on our
wiki.

		The new unique feature (apparently) among syntax highlighters is highlighting
HTTP headers and an arbitrary language in the request body. The most useful
languages here are XML and JSON both of which highlight.js does support.
Here’s the detailed post [http://softwaremaniacs.org/blog/2012/05/10/http-and-json-in-highlight-js/en/] about the feature.

		Two new style themes: a dark “south” Pojoaque [http://web-cms-designs.com/ftopict-10-pojoaque-style-for-highlight-js-code-highlighter.html] by Jason Tate and an
emulation ofXCode IDE by Angel Olloqui [https://github.com/angelolloqui].

		Three new languages: D by Aleksandar Ružičić [https://github.com/raleksandar], R by Joe Cheng [https://github.com/jcheng5]
and GLSL by Sergey Tikhomirov [https://github.com/tikhomirov].

		Nginx syntax has become a million times smaller and more universal thanks to
remaking it in a more generic manner that doesn’t require listing all the
directives in the known universe.

		Function titles are now highlighted in PHP.

		Haskell and VHDL were significantly reworked to be more rich and correct
by their respective maintainers Jeremy Hull [https://github.com/sourrust] and Igor Kalnitsky [https://github.com/ikalnitsky].

And last but not least, many bugs have been fixed around correctness and
language detection.

Overall highlight.js currently supports 51 languages and 20 style themes.

Version 6.2

A lot of things happened in highlight.js since the last version! We’ve got nine
new contributors, the discussion group came alive, and the main branch on GitHub
now counts more than 350 followers. Here are most significant results coming
from all this activity:

		5 (five!) new languages: Rust, ActionScript, CoffeeScript, MatLab and
experimental support for markdown. Thanks go to Andrey Vlasovskikh [https://github.com/vlasovskikh],
Alexander Myadzel [https://github.com/myadzel], Dmytrii Nagirniak [https://github.com/dnagir], Oleg Efimov [https://github.com/Sannis], Denis
Bardadym [https://github.com/btd] and John Crepezzi [https://github.com/jcheng5].

		2 new style themes: Monokai by Luigi Maselli [http://grigio.org/] and stylistic imitation of
another well-known highlighter Google Code Prettify by Aahan Krish [https://github.com/geekpanth3r].

		A vast number of correctness fixes and code refactorings [https://github.com/isagalaev/highlight.js/commits/], mostly made
by Oleg Efimov [https://github.com/Sannis] and Evgeny Stepanischev [https://github.com/bolknote].

Version 6.1 — Solarized

Jeremy Hull [https://github.com/sourrust] has implemented my dream feature — a port of Solarized [http://ethanschoonover.com/solarized]
style theme famous for being based on the intricate color theory to achieve
correct contrast and color perception. It is now available for highlight.js in
both variants — light and dark.

This version also adds a new original style Arta. Its author pumbur maintains a
heavily modified fork of highlight.js [https://github.com/pumbur/highlight.js] on GitHub.

Version 6.0

New major version of the highlighter has been built on a significantly
refactored syntax. Due to this it’s even smaller than the previous one while
supporting more languages!

New languages are:

		Haskell by Jeremy Hull [https://github.com/sourrust]

		Erlang in two varieties — module and REPL — made collectively by Nikolay
Zakharov [http://desh.su/], Dmitry Kovega [https://github.com/arhibot] and Sergey Ignatov [https://github.com/ignatov]

		Objective C by Valerii Hiora [https://github.com/vhbit]

		Vala by Antono Vasiljev [https://github.com/antono]

		Go by Stephan Kountso [https://github.com/steplg]

Also this version is marginally faster and fixes a number of small long-standing
bugs.

Developer overview of the new language syntax is available in a blog post about
recent beta release [http://softwaremaniacs.org/blog/2011/04/25/highlight-js-60-beta/en/].

P.S. New version is not yet available on a Yandex’ CDN, so for now you have to
download your own copy [http://highlightjs.org/download/].

Version 5.14

Fixed bugs in HTML/XML detection and relevance introduced in previous
refactoring.

Also test.html now shows the second best result of language detection by
relevance.

Version 5.13

Past weekend began with a couple of simple additions for existing languages but
ended up in a big code refactoring bringing along nice improvements for language
developers.

For users

		Description of C++ has got new keywords from the upcoming C++ 0x [http://ru.wikipedia.org/wiki/C%2B%2B0x] standard.

		Description of HTML has got new tags from HTML 5 [http://en.wikipedia.org/wiki/HTML5].

		CSS-styles have been unified to use consistent padding and also have lost
pop-outs with names of detected languages.

		Igor Kalnitsky [https://github.com/ikalnitsky] has sent two new language descriptions: CMake и VHDL.

This makes total number of languages supported by highlight.js to reach 35.

Bug fixes:

		Custom classes on <pre> tags are not being overridden anymore

		More correct highlighting of code blocks inside non-<pre> containers:
highlighter now doesn’t insist on replacing them with its own container and
just replaces the contents.

		Small fixes in browser compatibility and heuristics.

For developers

The most significant change is the ability to include language submodes right
under contains instead of defining explicit named submodes in the main array:

contains: [
 'string',
 'number',
 {begin: '\\n', end: hljs.IMMEDIATE_RE}
]

This is useful for auxiliary modes needed only in one place to define parsing.
Note that such modes often don’t have className and hence won’t generate a
separate in the resulting markup. This is similar in effect to
noMarkup: true. All existing languages have been refactored accordingly.

Test file test.html has at last become a real test. Now it not only puts the
detected language name under the code snippet but also tests if it matches the
expected one. Test summary is displayed right above all language snippets.

CDN

Fine people at Yandex [http://yandex.com/] agreed to host highlight.js on their big fast servers.
Link up [http://softwaremaniacs.org/soft/highlight/en/download/]!

Version 5.10 — “Paris”.

Though I’m on a vacation in Paris, I decided to release a new version with a
couple of small fixes:

		Tomas Vitvar discovered that TAB replacement doesn’t always work when used
with custom markup in code

		SQL parsing is even more rigid now and doesn’t step over SmallTalk in tests

Version 5.9

A long-awaited version is finally released.

New languages:

		Andrew Fedorov made a definition for Lua

		a long-time highlight.js contributor Peter Leonov [http://kung-fu-tzu.ru/] made a definition for
Nginx config

		Vladimir Moskva [http://fulc.ru/] made a definition for TeX

Fixes for existing languages:

		Loren Segal [http://gnuu.org/] reworked the Ruby definition and added highlighting for
YARD [http://yardoc.org/] inline documentation

		the definition of SQL has become more solid and now it shouldn’t be overly
greedy when it comes to language detection

The highlighter has become more usable as a library allowing to do highlighting
from initialization code of JS frameworks and in ajax methods (see.
readme.eng.txt).

Also this version drops support for the WordPress [http://wordpress.org/] plugin. Everyone is
welcome to pick up its maintenance [http://softwaremaniacs.org/blog/2012/05/10/http-and-json-in-highlight-js/en/] if needed.

Version 5.8

		Jan Berkel has contributed a definition for Scala. +1 to hotness!

		All CSS-styles are rewritten to work only inside <pre> tags to avoid
conflicts with host site styles.

Version 5.7.

Fixed escaping of quotes in VBScript strings.

Version 5.5

This version brings a small change: now .ini-files allow digits, underscores and
square brackets in key names.

Version 5.4

Fixed small but upsetting bug in the packer which caused incorrect highlighting
of explicitly specified languages. Thanks to Andrew Fedorov for precise
diagnostics!

Version 5.3

The version to fulfil old promises.

The most significant change is that highlight.js now preserves custom user
markup in code along with its own highlighting markup. This means that now it’s
possible to use, say, links in code. Thanks to Vladimir Dolzhenko [http://dolzhenko.blogspot.com/] for the
initial proposal [https://github.com/isagalaev/highlight.js/commit/f3056941bda56d2b72276b97bc0dd5f230f2473f] and for making a proof-of-concept patch.

Also in this version:

		Vasily Polovnyov [http://vasily.polovnyov.ru/] has sent a GitHub-like style and has implemented
support for CSS @-rules and Ruby symbols.

		Yura Zaripov has sent two styles: Brown Paper and School Book.

		Oleg Volchkov has sent a definition for Parser 3 [http://www.parser.ru/].

Version 5.2

		at last it’s possible to replace indentation TABs with something sensible (e.g. 2 or 4 spaces)

		new keywords and built-ins for 1C by Sergey Baranov

		a couple of small fixes to Apache highlighting

Version 5.1

This is one of those nice version consisting entirely of new and shiny
contributions!

		Vladimir Ermakov [http://vehq.ru/about/] created highlighting for AVR Assembler

		Ruslan Keba [http://rukeba.com/] created highlighting for Apache config file. Also his
original visual style for it is now available for all highlight.js languages
under the name “Magula”.

		Shuen-Huei Guan [http://drakeguan.org/] (aka Drake) sent new keywords for RenderMan
languages. Also thanks go to Konstantin Evdokimenko [http://k-evdokimenko.moikrug.ru/] for his advice on
the matter.

Version 5.0

The main change in the new major version of highlight.js is a mechanism for
packing several languages along with the library itself into a single compressed
file. Now sites using several languages will load considerably faster because
the library won’t dynamically include additional files while loading.

Also this version fixes a long-standing bug with Javascript highlighting that
couldn’t distinguish between regular expressions and division operations.

And as usually there were a couple of minor correctness fixes.

Great thanks to all contributors! Keep using highlight.js.

Version 4.3

This version comes with two contributions from Jason Diamond [http://jason.diamond.name/weblog/]:

		language definition for C# (yes! it was a long-missed thing!)

		Visual Studio-like highlighting style

Plus there are a couple of minor bug fixes for parsing HTML and XML attributes.

Version 4.2

The biggest news is highlighting for Lisp, courtesy of Vasily Polovnyov. It’s
somewhat experimental meaning that for highlighting “keywords” it doesn’t use
any pre-defined set of a Lisp dialect. Instead it tries to highlight first word
in parentheses wherever it makes sense. I’d like to ask people programming in
Lisp to confirm if it’s a good idea and send feedback to the forum [http://softwaremaniacs.org/forum/highlightjs/].

Other changes:

		Smalltalk was excluded from DEFAULT_LANGUAGES to save traffic

		Vladimir Epifanov [http://voldmar.ya.ru/] has implemented javascript style switcher for
test.html

		comments now allowed inside Ruby function definition

		MEL [http://en.wikipedia.org/wiki/Maya_Embedded_Language] language from Shuen-Huei Guan [http://drakeguan.org/]

		whitespace now allowed between <pre> and <code>

		better auto-detection of C++ and PHP

		HTML allows embedded VBScript (<% .. %>)

Version 4.1

Languages:

		Bash from Vah

		DOS bat-files from Alexander Makarov (Sam)

		Diff files from Vasily Polovnyov

		Ini files from myself though initial idea was from Sam

Styles:

		Zenburn from Vladimir Epifanov, this is an imitation of a
well-known theme for Vim [http://en.wikipedia.org/wiki/Zenburn].

		Ascetic from myself, as a realization of ideals of non-flashy highlighting:
just one color in only three gradations :-)

In other news. One small bug [http://softwaremaniacs.org/forum/viewtopic.php?id=1823] was fixed, built-in keywords were added for
Python and C++ which improved auto-detection for the latter (it was shame that
my wife’s blog [http://alenacpp.blogspot.com/] had issues with it from time to time). And lastly
thanks go to Sam for getting rid of my stylistic comments in code that were
getting in the way of JSMin [http://code.google.com/p/jsmin-php/].

Version 4.0

New major version is a result of vast refactoring and of many contributions.

Visible new features:

		Highlighting of embedded languages. Currently is implemented highlighting of
Javascript and CSS inside HTML.

		Bundled 5 ready-made style themes!

Invisible new features:

		Highlight.js no longer pollutes global namespace. Only one object and one
function for backward compatibility.

		Performance is further increased by about 15%.

Changing of a major version number caused by a new format of language definition
files. If you use some third-party language files they should be updated.

Version 3.5

A very nice version in my opinion fixing a number of small bugs and slightly
increased speed in a couple of corner cases. Thanks to everybody who reports
bugs in he forum [http://softwaremaniacs.org/forum/highlightjs/] and by email!

There is also a new language — XML. A custom XML formerly was detected as HTML
and didn’t highlight custom tags. In this version I tried to make custom XML to
be detected and highlighted by its own rules. Which by the way include such
things as CDATA sections and processing instructions (<? ... ?>).

Version 3.3

Vladimir Gubarkov [http://xonixx.blogspot.com/] has provided an interesting and useful addition.
File export.html contains a little program that shows and allows to copy and
paste an HTML code generated by the highlighter for any code snippet. This can
be useful in situations when one can’t use the script itself on a site.

Version 3.2 consists completely of contributions:

		Vladimir Gubarkov has described SmallTalk

		Yuri Ivanov has described 1C

		Peter Leonov has packaged the highlighter as a Firefox extension

		Vladimir Ermakov has compiled a mod for phpBB

Many thanks to you all!

Version 3.1

Three new languages are available: Django templates, SQL and Axapta. The latter
two are sent by Dmitri Roudakov [https://github.com/isagalaev/highlight.js/commit/f3056941bda56d2b72276b97bc0dd5f230f2473f]. However I’ve almost entirely rewrote an
SQL definition but I’d never started it be it from the ground up :-)

The engine itself has got a long awaited feature of grouping keywords
(“keyword”, “built-in function”, “literal”). No more hacks!

Version 3.0

It is major mainly because now highlight.js has grown large and has become
modular. Now when you pass it a list of languages to highlight it will
dynamically load into a browser only those languages.

Also:

		Konstantin Evdokimenko of RibKit [http://ribkit.sourceforge.net/] project has created a highlighting for
RenderMan Shading Language and RenderMan Interface Bytestream. Yay for more
languages!

		Heuristics for C++ and HTML got better.

		I’ve implemented (at last) a correct handling of backslash escapes in C-like
languages.

There is also a small backwards incompatible change in the new version. The
function initHighlighting that was used to initialize highlighting instead of
initHighlightingOnLoad a long time ago no longer works. If you by chance still
use it — replace it with the new one.

Version 2.9

Highlight.js is a parser, not just a couple of regular expressions. That said
I’m glad to announce that in the new version 2.9 has support for:

		in-string substitutions for Ruby – #{...}

		strings from from numeric symbol codes (like #XX) for Delphi

Version 2.8

A maintenance release with more tuned heuristics. Fully backwards compatible.

Version 2.7

		Nikita Ledyaev presents highlighting for VBScript, yay!

		A couple of bugs with escaping in strings were fixed thanks to Mickle

		Ongoing tuning of heuristics

Fixed bugs were rather unpleasant so I encourage everyone to upgrade!

Version 2.4

		Peter Leonov provides another improved highlighting for Perl

		Javascript gets a new kind of keywords — “literals”. These are the words
“true”, “false” and “null”

Also highlight.js homepage now lists sites that use the library. Feel free to
add your site by dropping me a message until I find the time to build a
submit form.

Version 2.3

This version fixes IE breakage in previous version. My apologies to all who have
already downloaded that one!

Version 2.2

		added highlighting for Javascript

		at last fixed parsing of Delphi’s escaped apostrophes in strings

		in Ruby fixed highlighting of keywords ‘def’ and ‘class’, same for ‘sub’ in
Perl

Version 2.0

		Ruby support by Anton Kovalyov [https://github.com/geekpanth3r]

		speed increased by orders of magnitude due to new way of parsing

		this same way allows now correct highlighting of keywords in some tricky
places (like keyword “End” at the end of Delphi classes)

Version 1.0

Version 1.0 of javascript syntax highlighter is released!

It’s the first version available with English description. Feel free to post
your comments and question to highlight.js forum [http://softwaremaniacs.org/forum/viewforum.php?id=6]. And don’t be afraid
if you find there some fancy Cyrillic letters – it’s for Russian users too :-)

 © Copyright 2015, The dolfin-adjoint team.

features/index.html

 Navigation

 		
 index

 		
 modules |

 		 »

Features of dolfin-adjoint

Generality

dolfin-adjoint works for both steady and time-dependent models, and for both linear
and nonlinear models. The user interface is exactly the same in both cases. For an example
of adjoining a nonlinear time-dependent model, see the tutorial.

Ease of use

dolfin-adjoint has been carefully designed to try to make its use as easy as possible. In many cases
the only change to the forward model is to add

from dolfin_adjoint import *

at the top of the model. For example, deriving the adjoint of the tutorial example requires adding
precisely two lines to the forward model; implementing a checkpointing scheme requires adding
another two. dolfin-adjoint also makes it extremely easy to verify the correctness of the adjoint model.
It offers a powerful syntax for expressing general functionals.

Efficiency

Efficiency of the resulting model is absolutely crucial for real applications. The efficiency of
an adjoint model is measured as (time for forward and adjoint run)/(time for forward run). Naumann (2011) [http://dx.doi.org/10.1137/1.9781611972078] states
that a typical value for this ratio when using algorithmic differentiation tools is in the range 3–30. By contrast, dolfin-adjoint is extremely efficient;
consider the following examples from the papers:

		PDE
		Theoretical optimum
		Achieved efficiency

		Cahn-Hilliard
		1.2
		1.22

		Stokes
		2.0
		1.86

		Viscoelasticity
		2.0
		2.029

		Gross-Pitaevskii
		1.5
		1.54

		Gray-Scott
		2.0
		2.04

		Navier-Stokes
		1.33
		1.41

		Mathematical programming with equilibrium constraints
		1.125
		1.126

		Shallow water
		1.125
		1.125

		Wetting and drying
		1.5
		1.55

Parallelism

Parallelism is ubiquitous in modern computational science. However,
applying algorithmic differentiation to parallel codes is still a
major research challenge. Algorithmic differentiation tools must be
specially modified to understand MPI and OpenMP directives, and
translate them into their parallel equivalents. By contrast, because
of the high-level abstraction taken in libadjoint, the problem of
parallelism simply disappears. In fact, there is no code whatsoever
in either dolfin-adjoint or libadjoint to handle parallelism; by
deriving the adjoint at the right level of abstraction, the problem no
longer exists. If the forward model runs in parallel, the adjoint
model also runs in parallel, with no modification.

For more details, see the manual section on parallelism and the dolfin-adjoint paper.

Checkpointing

The adjoint model is a linearisation of the forward model. If the
forward model is nonlinear, then the solution of that forward model
must be available to linearise the forward model. By default,
dolfin-adjoint stores every variable computed in memory, as this is
the fastest and most straightforward option; however, this may not be
feasible for large runs, or for runs with very many timesteps.

The solution to this problem is to employ a checkpointing
scheme. Rather than store every variable during the forward run,
checkpoints are stored at strategically chosen intervals, from which
the model may recompute the missing solutions. During the adjoint run,
if a forward variable is necessary and unavailable, the forward model
is restarted from the nearest available checkpoint to compute the
missing solutions; once these are available, the adjoint run
continues.

Thus, to employ a checkpointing scheme, the control flow of the
adjoint run must seamlessly jump between assembling and solving the
adjoint equations, and assembling and solving parts of the forward
run. Coding a checkpointing scheme is quite complicated, and so most
hand-coded adjoint models do not use them. However, the
libadjoint library underlying dolfin-adjoint
embeds the excellent revolve library [http://www2.math.uni-paderborn.de/index.php?id=12067&L=1] of Griewank and Walther [http://dx.doi.org/10.1145/347837.347846],
and can automatically employ optimal checkpointing schemes for
almost no marginal user effort.

For more details, see the manual section on checkpointing and the dolfin-adjoint paper.

Optimisation with PDE constraints

Many computational problems in engineering and science can be
formulated as optimisation problems in which a system of partial
differential equation occur as a constraint. To solve these problems
efficiently, the use of gradient based optimisation algorithms is
essential.

The fact that dolfin-adjoint has direct access to the gradient
information made it possible to directly interface dolfin-adjoint to a
range of powerful optimisation algorithms. That means, that an
existing FEniCS forward model can be easily used in the context of an
optimisation problem with minimal development effort.

For more details, see the manual section on optimisation.

Generalised stability analysis

Generalised stability analysis is an extension of linear stability analysis with
two important features: it allows for the stability analysis of non-normal systems
that permit transient perturbations that grow in magnitude before decaying, and
it allows for the analysis of the stability of time-dependent base solutions.

The core computation involved in conducting a generalised stability analysis is
the singular value decomposition of the propagator: each action of the
propagator requires the solution of the tangent linear system, and each adjoint
action (for the singular value decomposition) requires the solution of the
adjoint system. Since dolfin-adjoint automates the solution of these systems, it
can also automate generalised stability analysis by embedding these computations
in a matrix-free Krylov–Schur algorithm for computing the SVD of the
propagator.

For more details, see the manual section on generalised stability analysis.

 © Copyright 2015, The dolfin-adjoint team.

_images/math/e53ac05087e8feaee0fe0dd75c6c29527daacf76.png
Yd

_themes/dolfin-adjoint/static/highlight/README.html

 Navigation

 		
 index

 		
 modules |

 		 »

Highlight.js

Highlight.js highlights syntax in code examples on blogs, forums and,
in fact, on any web page. It’s very easy to use because it works
automatically: finds blocks of code, detects a language, highlights it.

Autodetection can be fine tuned when it fails by itself (see “Heuristics”).

Basic usage

Link the library and a stylesheet from your page and hook highlighting to
the page load event:

<link rel="stylesheet" href="styles/default.css">
<script src="highlight.pack.js"></script>
<script>hljs.initHighlightingOnLoad();</script>

This will highlight all code on the page marked up as <pre><code> .. </code></pre>.
If you use different markup or need to apply highlighting dynamically, read
“Custom initialization” below.

		You can download your own customized version of “highlight.pack.js” or
use the hosted one as described on the download page:
http://highlightjs.org/download/

		Style themes are available in the download package or as hosted files.
To create a custom style for your site see the class reference in the file
CSS classes reference [http://highlightjs.readthedocs.org/en/latest/css-classes-reference.html] from the downloaded package.

node.js

Highlight.js can be used under node.js. The package with all supported languages is
installable from NPM:

npm install highlight.js

Alternatively, you can build it from the source with only languages you need:

python3 tools/build.py -tnode lang1 lang2 ..

Using the library:

var hljs = require('highlight.js');

// If you know the language
hljs.highlight(lang, code).value;

// Automatic language detection
hljs.highlightAuto(code).value;

AMD

Highlight.js can be used with an AMD loader. You will need to build it from
source in order to do so:

$ python3 tools/build.py -tamd lang1 lang2 ..

Which will generate a build/highlight.pack.js which will load as an AMD
module with support for the built languages and can be used like so:

require(["highlight.js/build/highlight.pack"], function(hljs){

 // If you know the language
 hljs.highlight(lang, code).value;

 // Automatic language detection
 hljs.highlightAuto(code).value;
});

Tab replacement

You can replace TAB (‘\x09’) characters used for indentation in your code
with some fixed number of spaces or with a to give them special
styling:

<script type="text/javascript">
 hljs.configure({tabReplace: ' '}); // 4 spaces
 // ... or
 hljs.configure({tabReplace: '\t'});

 hljs.initHighlightingOnLoad();
</script>

Custom initialization

If you use different markup for code blocks you can initialize them manually
with highlightBlock(code) function. It takes a DOM element containing the
code to highlight and optionally a string with which to replace TAB
characters.

Initialization using, for example, jQuery might look like this:

$(document).ready(function() {
 $('pre code').each(function(i, e) {hljs.highlightBlock(e)});
});

You can use highlightBlock to highlight blocks dynamically inserted into
the page. Just make sure you don’t do it twice for already highlighted
blocks.

If your code container relies on
 tags instead of line breaks (i.e. if
it’s not <pre>) set the useBR option to true:

hljs.configure({useBR: true});
$('div.code').each(function(i, e) {hljs.highlightBlock(e)});

Heuristics

Autodetection of a code’s language is done using a simple heuristic:
the program tries to highlight a fragment with all available languages and
counts all syntactic structures that it finds along the way. The language
with greatest count wins.

This means that in short fragments the probability of an error is high
(and it really happens sometimes). In this cases you can set the fragment’s
language explicitly by assigning a class to the <code> element:

<pre><code class="html">...</code></pre>

You can use class names recommended in HTML5: “language-html”,
“language-php”. Classes also can be assigned to the <pre> element.

To disable highlighting of a fragment altogether use “no-highlight” class:

<pre><code class="no-highlight">...</code></pre>

Export

File export.html contains a little program that allows you to paste in a code
snippet and then copy and paste the resulting HTML code generated by the
highlighter. This is useful in situations when you can’t use the script itself
on a site.

Meta

		Version: 8.0

		URL: http://highlightjs.org/

For the license terms see LICENSE files.
For authors and contributors see AUTHORS.en.txt file.

 © Copyright 2015, The dolfin-adjoint team.

_images/math/05434c1f34e840bcc669c671d5085a951bbba2cc.png

_images/math/abc01e2e97ed2931e37caf29c598b70a6380fad7.png

_images/math/06bd3e33e8f98ccfeb29f1f886b0edd940f03f88.png
Flu,m) =10

_images/math/04434f46c237f296a19bc699ce17b745d97d4530.png

_images/math/0a5711c7a37994043b2bc3bb374adca232491762.png

_images/math/73f5e249c88b2b3068263480f576b051cb5c4f6e.png

_images/math/d008a92757678c827bdf7df3dbf0780118faa749.png

_images/math/a68d8e5fe2cddca0f2d02aa3f41c9e1976153336.png
J(u,m)

_images/math/9777e1078333d53846e482e93d6738fff6706be7.png

_images/math/44c1a605bf839146dfe7eda9b0da37b7a268cb8c.png

_images/math/93b0a7f9b7873ce76bf5a4a46baa2258276586e0.png

_images/math/a8cf64be3d2dc5b7fdfd0a1dca6f4b9e286d36b1.png

_images/math/fb7b837f1cb13adc7262c4eec2e6fb990b306115.png

_images/math/43c317a1c90300e2d7df673072e6a8cc23b5ecce.png

_images/math/941d1f4f5f08d519954b3b5e766eb4522fea8c2b.png
I — ¢

_images/math/40f7f3b48cf3ac11c815a155b672d1551d66274e.png
b, <m < b,

_images/math/ef6101a46c25cf80c577e1b75ec92c987c0e8c6c.png

_images/math/d919b4886313b0263763c87d8fe7f019c0a3b3cc.png

_images/math/6480b032e41e7a92a66382ef7a220b91ad406f1c.png

_images/math/25296525514d5a9d4877b00536e03efcaaafb996.png
ag < |

_images/math/5d9e7b2aec3287330051a115f2ea3cdc8c7a6587.png

citing/index.html

 Navigation

 		
 index

 		
 modules |

 		 »

How to cite us

If you use dolfin-adjoint in your research, the developers would be
grateful if you would cite the relevant publications.

If you use dolfin-adjoint, please cite:

		Patrick E. Farrell, David A. Ham, Simon W. Funke and Marie E. Rognes (2013).
Automated derivation of the adjoint of high-level transient finite element programs,
SIAM Journal on Scientific Computing 35.4, pp. C369-C393. doi:10.1137/120873558 [http://dx.doi.org/10.1137/120873558]. arXiv:1204.5577 [http://arxiv.org/abs/1204.5577] [cs.MS].
[PDF].

If you use the optimisation framework of dolfin-adjoint, please also
cite the optimisation paper:

		Simon W. Funke and Patrick E. Farrell (2013).
A framework for automated PDE-constrained optimisation,
submitted. arXiv:1302.3894 [cs.MS]
[PDF].

If you use checkpointing, you should also cite the paper by the
authors of the revolve library [http://www2.math.uni-paderborn.de/index.php?id=12067&L=1]:

		Andreas Griewank and Andrea Walther (2000).
Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation,
ACM Transactions on Mathematical Software, 26, pp. 19–45.
[link [http://dx.doi.org/10.1145/347837.347846]].

If you use dolfin-adjoint to perform a generalised stability analysis,
please also cite the generalised stability analysis paper:

		Patrick E. Farrell, Colin J. Cotter and Simon W. Funke (2014).
A framework for the automation of generalised stability theory,
SIAM Journal on Scientific Computing 36.1, pp. C25–C48. doi:10.1137/120900745 [http://dx.doi.org/10.1137/120900745]. arXiv:1211.6989 [http://arxiv.org/abs/1211.6989] [cs.MS].
[PDF].

 © Copyright 2015, The dolfin-adjoint team.

_images/u_combined.png

download/index.html

 Navigation

 		
 index

 		
 modules |

 		 »

Downloading dolfin-adjoint

Dependencies

Mandatory dependencies:

		FEniCS [http://fenicsproject.org], version 1.5. For installation instructions for FEniCS/dolfin, see their installation instructions [http://fenicsproject.org/download].

		libadjoint [http://bitbucket.org/dolfin-adjoint/libadjoint]. This is a library written in C that manipulates the tape of the forward model to derive the associated adjoint equations.

Optional dependencies:

		SLEPc [http://www.grycap.upv.es/slepc/]. This is necessary if you want to conduct generalised stability analyses.

		IPOPT [https://projects.coin-or.org/Ipopt] and pyipopt [https://github.com/xuy/pyipopt]: This is the best available open-source optimisation algorithm. Strongly recommended if you wish to solve PDE-constrained optimisation problems. Make sure to compile IPOPT against the Harwell Subroutine Library [http://www.hsl.rl.ac.uk/ipopt/].

		Moola [https://github.com/funsim/moola]: A set of optimisation algorithms specifically designed for PDE-constrained optimisation problems. Install with pip install moola. Note: still experimental.

Virtual machine

If you’d like to try dolfin-adjoint out without any installation headaches,
try out our VirtualBox virtual machine with dolfin-adjoint 1.4 installed [http://amcg.ese.ic.ac.uk/~pef/vm/dolfin-adjoint-1.4.ova]. Here are
the instructions:

		Download and install VirtualBox from https://www.virtualbox.org, or from your operating system.

		Download the virtual machine [http://amcg.ese.ic.ac.uk/~pef/vm/dolfin-adjoint-1.4.ova].

		Start VirtualBox, click on “File -> Import Appliance”, select the virtual machine image and click on “Import”.

		Select the “dolfin-adjoint VM” and click on “Start” to boot the machine.

		For installing new software you need the login credentials:
		Username: fenics

		Password: dolfinadjoint

Binary packages

Binary packages are currently available for Ubuntu users through the
launchpad PPA [https://launchpad.net/~libadjoint/+archive/ppa]. To install dolfin-adjoint, do

sudo apt-add-repository ppa:libadjoint/ppa
sudo apt-get update
sudo apt-get install python-dolfin-adjoint

which should install the latest stable version on your system.
Once that’s done, why not try out the tutorial?

From source

The latest stable release of dolfin-adjoint and libadjoint is version 1.5 which is compatible with FEniCS 1.5. Download links:

		libadjoint: https://bitbucket.org/dolfin-adjoint/libadjoint/get/libadjoint-1.5.zip

		dolfin-adjoint: https://bitbucket.org/dolfin-adjoint/dolfin-adjoint/get/dolfin-adjoint-1.5.zip

The development version is available from bitbucket [https://bitbucket.org/dolfin-adjoint/dolfin-adjoint] with the following
command:

hg clone https://bitbucket.org/dolfin-adjoint/dolfin-adjoint#dolfin-adjoint-1.5

The development version of libadjoint is also available from bitbucket with the
following command:

hg clone https://bitbucket.org/dolfin-adjoint/libadjoint#libadjoint-1.5

As dolfin-adjoint is a pure Python module, once its dependencies are
installed the development version can be used without system-wide
installation via

export PYTHONPATH=<path to dolfin-adjoint>:$PYTHONPATH

Contributions (such as handling new features of dolfin, or new test
cases or examples) are very welcome.

Older versions

An older version, that is compatible with FEniCS 1.4 can be downloaded with:

		libadjoint: https://bitbucket.org/dolfin-adjoint/libadjoint/downloads/libadjoint-1.4.tar.gz

		dolfin-adjoint: https://bitbucket.org/dolfin-adjoint/dolfin-adjoint/downloads/dolfin-adjoint-1.4.tar.gz

 © Copyright 2015, The dolfin-adjoint team.

_images/mpec-smoothmax.jpg
max
0.2f | ——max,

_images/poisson-topology.png

_images/stokes-topology.png

_images/more.png

_images/stokes-topology-bcs.png
1/4

1/6

£
]
W

£

T 3

Figure 10. Design domain for the double pipe example.

_images/salinity-ic.png

_images/klein-sensitivity.png

_images/math/5bc112a1c7331229a29802cfe2359aaf1c44460b.png

_images/math/c3ce9074ef16aa0e9c59e03fdba64660408e405a.png
I — ¢

_images/math/f5eace386968f95583ec1934f0e5dbcbf9e8b0c6.png

_images/math/d9491a91a3d232985abe114a19828149089e2f49.png

_images/math/9178829d16a1dd3b645ea8c622acf5de1525724c.png
y" — At (vAY" — Vp") = Atu" +y"
V. =0

_images/math/67e9c0e9620174c19a1b2ce1bef8f93b9f2d12e0.png

_images/math/f3233ec9f583704cae1497da5bc946d36b3e5871.png
Yy

eV

_images/math/5b4271afe7fc7c0ee84172e0ad19b82caf450c00.png

_images/math/32b40997f7bd8edacab049339b2f27ea26cfcdc8.png

_images/math/1d3cb81063fd04cd699285c31684aa3e5b20ada6.png

_images/math/2844765472c7a77093c9cf36c35205c0c9e46fec.png
OF du
udm

oF
om

_images/math/6a84b56d8b8ec584bb4d8a63b78d041b5dcb3d4d.png

_images/math/8873b418c637401400311eadce2ca0f9397b1b09.png

_images/math/0e22076955898e6c9bb38aa079135195c24dc81e.png

_images/math/efe85b99048f9fcbac769ae7cdc8012347008a1e.png
alu, v) = v(V(), V(©))q = v (V(n, oo —v (V@I + %V (1, 0)p0
= (p,divo)g + (P, vhoq,, — (0, divudg + (an,w)pa,,.

L) = = (V0)n,g) g+ L0(0.0) s, + (409D,

_images/math/552ee4191e77df6281dd8fbb4a9141eecded97dd.png
v el

_images/math/9731fc26f32d926797c380cfa4d7647e496cb133.png
d(z,y) = 5 sin(nz)sin(my)

_images/math/fc8e77d840f222617596b765d4edabdac8596bd1.png

_images/math/3a081501cf35a2ef9c9f0c1aa605a1720007b58c.png

_images/math/5f102f9794a6bae3f5c9d66d8312cef40ccb130a.png
ye —vAy+Vp =u(t) nQx(0,T),
—V.y=0 inQx(0,7T),
y(.) =0 ondQ x (0,T),
y(-.0) =y inQ.

_images/math/a49edcae0447d28af2143bf69f8300df2ab4bd41.png

_images/math/30adf3daef020652cc66de353cc82bc67829215b.png
(Our, dur) = (Ldug, Ldug) = (dup, L™ Léugp) .

_images/math/be924d6e76024550d809c80880ebb9b023b487dd.png

_images/math/a5cd2096f57fc3e589b2d292312f50652a4300dd.png
ur = Mug).

_images/math/2298cf1485084afe72757a9c8483af49a138d81f.png

_images/math/1d0a150092158fa2468ade42556fa01f9be87093.png
g > 1

_images/math/8c7a0eea432fa65bec4fbabadd0e9c0723b98b55.png

_images/math/648e8e06a95bc6260d0815123540c1df967a0562.png

_images/math/183421431fcc0a42e22f825a33dcc3c51607fa6e.png

_images/math/1b46799a86dfab4de7908e14ffc2f3c8d47e124e.png
O eV

_images/math/4040c43f7d988e04096e2edd4a920ee68079d331.png

_images/math/b1597d7ca48a8e36bee3cc4b2c1fbab452db334e.png

_images/math/35d099034992df0f04ccd52aa886dd0d61efcfc7.png

_images/math/9604283f6ee5beb486689aceb84d2d4def6dcb2a.png

